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The need: managing an  
increasingly scarce resource 

https://eoimages.gsfc.nasa.gov/images/imagerecords/89000/89482/iss048e073279_lrg.jpg 
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Is seasonal prediction  
of wintertime snowfall  
& runoff possible? 
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Weather, sub-seasonal, and seasonal variations. 

4 from 2016 NAS report on S2S improvement, here.  

The day-to-day weather is slightly  
modulated  by more low-frequency variability  
in atmosphere and boundary forcings. 
That’s all that will be predictable at seasonal 
time scales.  

https://www.nap.edu/catalog/21873/next-generation-earth-system-prediction-strategies-for-subseasonal-to-seasonal


Two sources of seasonal predictive skill:  forecasts 
of the weather, and the state of the land surface 

5 
inspired by Mendoza et al. 2017 

The absolute value of skill here 
depends on factors such as: 
 
(a) the inherent ability to predict – is the 

phenomenon predictable? 
(b) the ability of the prediction system to 

perform up to the physical limits of 
predictability. 

(c) the ability to model changes to the 
snow pack during the season.. 

(d) the metric one uses for evaluation. 

https://www.hydrol-earth-syst-sci.net/21/3915/2017/


Two sources of seasonal predictive skill:  forecasts 
of the weather, and the state of the land surface 
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The skill contributed by the 
accumulated snowpack grows 
as the water season 
progresses.  
 
Skill could be improved slightly 
with better procedures to 
estimate the snow pack and 
with better land-surface and 
hydrology models to predict 
changes in the snow after it 
has fallen (melting, 
sublimation, etc.) 



Two sources of seasonal predictive skill:  forecasts 
of the weather, and the state of the land surface 
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Given many critical decisions that 
need to be made far in advance, any 
potential skill in the forecasts of 
expected precipitation and 
temperature at the beginning of the 
water season are particularly 
helpful. 
 
Is there any evidence of such skill? 



Kapnick et al., PNAS 2018; July 1980-
2015 prediction of March snow pack 

8 http://www.pnas.org/cgi/doi/10.1073/pnas.1716760115 

Mountain range snowpack 
prediction skill measured by 
correlations (Spearman) between 
observed March snowpack and 
predictors available July 1 from 
AOGCM models (triangles, circles) 
or climate indices (squares) where 
higher absolute values represent 
greater skill, shown for (A) various 
mountain ranges and (B) ranges 
aggregated in increasing scale. 
Dashed lines provided for the value 
of the higher-resolution multimodel 
(50 km and 25 km) prediction for 
snowpack over the entire 
mountainous WUS (0.48) and the 
negative value (−0.48) to provide a 
reference for correlations with 
climate indices. Inset provided for 
ranges in highest-resolution model; 
the 200-km model has no ranges for 
northern and southern Sierra 
Nevada, Oregon Cascades, or 
Arizona and New Mexico (SI 
Appendix, Fig. S1). 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716760115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716760115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716760115/-/DCSupplemental


Source: Climate.gov image adapted from Kapnick et al., Proc. Natl. Acad. Sci. 2018 

Low March snowpack case study: 2012-15 
Yearly predictions made July 1 (50 km model) vs. observed 
Low March snowpack case study: 2012-15 
Yearly predictions made July 1 (50 km model) vs. observed 
 

• Average of predictions 
for the 2012-2015 
snowpack drought made 
every July 1 for the 
following March (8-
month lead) using a 50 
km model 

• To put in perspective: 
The forecasts were made 
around the 4th of July 
holiday before the first 
snowflake of winter hit 
the ground 



What led to the capability for 8-month snow 
prediction in Kapnick et al. 2018? 

2) Initialization system developed for (1) (Chang et 
al. 2013) 

1) Global climate model developed at 
200km resolution (Delworth et al. 2006) 

4) To inform the development of a new prediction 
system from (3), we have analyzed various 
aspects of prediction skill & sources of skill 

3) Develop a seasonal to multi-seasonal 
system with (1) & (2) (Vecchi et al. 2014) 

Annual 
mean 
precipitation 
(mm/day) 

Ocean 
Temperature 
(Celsius) 

Ocean 
Depth 
(m) 

Correlation 
hurricane 
locations 
(model vs. 
observed) 
1981-2012 

• Select examples of skill: 
o Precipitation & temperature skill (Jia et al. 2015) 
o Winter storm track skill (Yang et al. 2015) 
o Sea ice prediction (Bushuk et al. 2017; 2018) 

• Select example sources of skill: 
o Stratospheric influence (Jia et al. 2017) 
o Role of initialization for western US precipitation (Yang et al. 2018) 
o Boundary condition role S. California 2016 winter (Zhang et al. 2017) 



A proposed 5-year program to understand and 
predict western US snowfall. 

• Understand: numerical experiments to define the upper end of predictive skill. 
• Also, understand the sources of predictive skill. 

• Test: Explore with modern prediction systems how well precipitation, snow, and 
runoff predictions were made over the last several decades. 
• Develop a snow reanalysis as a basis for forecast verification. 
• Test GFDL’s best system over several decades. 
• Test NWS’s best system over several decades. 
• Apply statistical postprocessing to remove systematic errors. 
• Use NWS lumped “HEFS” system to predict streamflows. 

• Decide: determine which parts of each system is best, and improve upon obvious 
problems. 

• Beta-test: Start producing experimental guidance from GFDL and/or NWS.    

• Tech transition: migrate the best system into operations. 

• Production: Produce seasonal snow and runoff forecasts operationally across the 
western US. 
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A pathway to implementation 
predictability studies, understanding 

snowfall reanalysis development 

generate GFDL retrospective simulations 

generate NWS retrospective simulations 

Evaluate the skill of precipitation, 
snow water equivalent, runoff 

postprocess the simulations to 
improve skill 

Model changes, synthesis with other 
system improvements, re-testing 

Adapt GFDL model  components for NWS use 

Pre-operational tests 

Start 

implement 
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Produce real-time experimental forecast guidance 



Proposed core and possible external partners 
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& others 
that are 
relevant 



A precedent: upcoming California DWR funding for 
sub-seasonal prediction: three thrusts 

• Statistically post-process sub-seasonal predictions to improve upon 
the raw numerical guidance from prediction systems. 

• Since tropical thunderstorm clusters modulate landfalling 
atmospheric rivers, develop diagnostics to understand what’s wrong 
with the prediction of tropical thunderstorm clusters. 

• Improve the prediction system’s representation of these tropical 
thunderstorm clusters (presumably improving the prediction of 
landfalling atmospheric rivers). 
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Challenges for a seasonal prediction initiative 

• Are we confident in seasonal precipitation predictability? 

• Funding to explore this.  My team in ESRL/PSD is putting 
some skin (base funding) in the game. 

• High-performance computing – NOAA is perpetually 
squeezed. 

• Uniting NWS’s previously separate weather and climate-
change prediction infrastructure. 

• Synthesizing improvements developed under this project 
with those from other projects. 
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Conclusions 

• Responding to CDWR & Jeanine Jones, NOAA scoped out a possible 
activity to make operational seasonal snowfall predictions in the 
western US, especially the Upper Colorado River. 

• NOAA would work collaboratively to achieve these seasonal snowfall 
predictions, including other partners when necessary. 

• We look forward to discussing this.  If it is possible to get this project 
off the ground, we can modify it so that it better meets the needs of 
Western Water. 

• Next steps? 
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Weather Research  
and Forecast 
Innovation Act  
of 2017 

Regarding funding, Congress has 
authorized, has asked for a 
report, but has not yet 
appropriated funds, neither in 
general nor specifically to this 
project.    
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https://www.congress.gov/bill/115th-congress/house-bill/353/text
https://www.congress.gov/bill/115th-congress/house-bill/353/text
https://www.congress.gov/bill/115th-congress/house-bill/353/text
https://www.congress.gov/bill/115th-congress/house-bill/353/text
https://www.congress.gov/bill/115th-congress/house-bill/353/text
https://www.congress.gov/bill/115th-congress/house-bill/353/text
https://www.congress.gov/bill/115th-congress/house-bill/353/text


Global warming 
should not be 
ignored as a  
predictable  
factor in seasonal 
snowfall forecasts. 
 
Generally, there 
will be less snow 
and more rain with 
each passing 
decade. 
 
Runoff will occur 
earlier in the water 
year. 
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More on the testing the GFDL and NWS 
prediction systems 

• Generate ensembles of predictions from 1 October to the end of the water year.   
With resources, generate forecasts from other initial dates (say, 15 Oct, 1 Nov, …).  
This provides more confidence in the results and will indicate whether there is 
skill at leads shorter than 6-8 months. 

• Test most up-to-date versions of the GFDL coupled prediction system (SPEAR) and 
the NWS Unified Forecast System (UFS).   These share several components. 
• Same (ocean and atmosphere and sea ice “dynamical core”) 
• Different (land-surface, treatment of subgrid processes, coupling of state components) 

• Evaluate precipitation and temperature forecasts at various lead times (e.g., 1 
month, 2 months … 8 months).  Evaluate snow-water equivalent.  Force the NWS 
Hydrologic Ensemble Forecast System with these precipitation and temperature 
forcings and evaluate runoff forecasts for accuracy. 

• Since computations are expensive and global in nature, we might as well evaluate 
many basins (Upper Colorado, tributaries, Columbia River, etc.). 
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More details on components of the project 
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Predictability studies 

• Commonly one generates an “ensemble” of simulations with a model 
in question and then uses one of the members of the ensemble to 
assess the predictability of the phenomenon.   Is the range of 
scenarios predicted by the ensemble “sharper” (more specific) than 
the overall climatology of possible model states? 

• After the fact, with analyses of past weather and the ocean, can 
nudge the predictions to analyzed data to examine the impact of 
near-perfect predictions of one part of the system (such as the El 
Nino). 

21 



Snowfall reanalysis generation 

• Synthesize work of UCLA scientists such as Steve Margulis 
(https://ntrs.nasa.gov/search.jsp?R=20180000648) , Mimi Hughes 
(NOAA ESRL PSD - high-resolution WRF dynamical downscaling), and 
Andy Wood (NCAR, various statistical models). 

• Use common modern data sources, in situ and remote, over period of 
reforecasts. 
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https://ntrs.nasa.gov/search.jsp?R=20180000648


Estimating precipitation and other hydrologically 
relevant forcings with dynamical downscaling 

High-resolution (~4 km) regional 
atmospheric models (e.g., WRF) forced by 
reanalysis datasets can outperform 
statistically gridded datasets in estimating 
annual high-elevation precipitation, 
particularly where in situ data is sparse1,2,3.  
 
A west-wide WRF reanalysis downscaling 
would serve as a training dataset for 
statistical postprocessing and also 
potentially as improved forcings for a 
second-generation SWE reanalysis. 

1.Gutmann et al. 2012; 2. Currier et al. 2017; 3. Hughes et al. 2017 



Supporting details on WRF downscaling 

Quality depends strongly on configuration: 
ESRL scientists have experience in 
configuring these simulations for optimal 
precipitation estimates.  

This dataset would not only give us high 
quality estimates of precipitation, but also 
Components that directly lead to SWE and 
its evolution at the surface (precipitation 
[amount and phase], temperature, SW/LW 
radiation at surface, and wind) 

Example WRF configuration: inner domain would have 3 
km grid spacing (within 9 km outer grid) 



Postprocessing the prediction system output. 

• Models can have systematic errors (too wet, too cold) and an 
unavoidable lack of spatial detail. 

• Through comparisons of past forecasts and observations, it is possible 
to restore spatial detail in mountainous regions and correct bias. 

• My organization, ESRL/PSD has significant experience in developing 
such techniques and making them operational in the NWS. 

• If, say, GFDL conducts multiple simulations with their prediction 
system, one with a 50-km grid spacing and another with 25 km (which 
is much more computationally expensive), the 50-km + statistical 
postprocessing can be used as a benchmark for the 25 km. 
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Migrating the system to operations 

• If the GFDL system is superior, then we would need to: 
• Test to isolate the causes.   Is it the coupling technique?   The land surface?   

The sub-grid parameterizations? 

• Test to determine whether their predictions are also superior with shorter-
lead forecasts. 

• Adapt the GFDL components so that they can be used in the UFS community 
model that the NWS runs operationally and supports to the research 
community. 
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