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Our motivating question:

How can increasingly available soil moisture information be used to better manage the
impacts of fire on people and ecosystems?

A decade-long journey of discovery:

Soil moisture affects growing-season wildfire size in the
southern Great Plains. (Krueger et al., 2015)

Concurrent and antecedent soil moisture related
differently to wildfire in different seasons.
(Krueger et al., 2016)

Soil moisture is a better growing-season wildfire
predictor than KBDI, a widely used drought index.
(Krueger et al., 2017)

Grassland fuel moisture and curing are strongly linked to
soil moisture. (Sharma et al., 2020)
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of grassland fuel loads. (Krueger et a|_’ 2021) Oklahoma State University Range Research Station, 2012.
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Model for grassland fuel load

Soil moisture

v

* First step — estimate evapotranspiration (ET,) di\ta
— FAO-56 dual crop coefficient method Veg. params. Weather data
— Scaling of reference ET (ET,) \ /
* Second step — estimate biomass v .
— Transpiration normalized by ET, ET. = (chKs + Ke)ETO
— Cumulative normalized T_ linearly related to
biomass production
T. = K., K.ET,

 Model cal/val for MOISST site
— Evapotranspiration measurements (ET) \\
— Grassland productivity measurements
— With and without direct insertion of soil\ _ "
Biomass =* Z (ET())i
l:

moisture data

e Statewide testing
— Predict grassland productivity/fuel load _ _ N
Figure caption: Flow-chart for grassland productivity/fuel load model.

— 25 counties, 3 years each



ET calibration/validation

e Calibration period
— 2013 -2015
— NSE =0.79 w/o FAW
— NSE =0.87 w/ FAW

* Validation period
- 2016-2017
— NSE =0.84 w/o FAW
— NSE =0.81 w/ FAW
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Figure caption: One-week average modeled ET,, measured ET, and PhenoCam green chromatic
coordinate (GCC) at the Marena, Oklahoma, In Situ Sensor Testbed (MOISST) 2013-2017. Modeled
ET. values used measured soil moisture instead of a simulated water balance (calibrated + FAW).



Biomass calibration

* Water productivity constant
— 45 kg ha't
— no literature comparisons
— further testing warranted

* Biomass/fuel production
— model reflects within
season dynamics

Figure caption: Accumulated above ground biomass (AGB) as a
function of the sum of the daily ratio of modeled (calibrated +
FAW) crop Transpiration (T.) and reference evapotranspiration
ET, from the mechanistic model, with the slope of regression
line representing water productivity (WP) for the grass crop
(panel a). Modeled and measured AGB accumulation rate at the
MOISST site in 2013 (panel b).
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- Calibrated + FAW
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Figure caption: Measured vs. modeled county level wild hay yield in Oklahoma in 2002,
2007, and 2012 for the calibrated model with direct insertion of soil moisture data
(calibrated + FAW).
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Relationship of FAW to MFM and
curing rate

e Strong linear relationship between MFM
and FAW, when FAW < 0.59 and declining

* Strong inverse linear relationship between
curing rate and FAW, when FAW < 0.3

e Maximum curing rate 12.6 g m? d! from
6—16 September 2013, when FAW
averaged 0.21. Grassland dead fuel loads
of 70 g m™? can propagate fire.

Figure caption: Top panel - Mixed-fuel moisture vs. fraction of available water capacity (FAW) for the 0-
40-cm soil layer for sampling intervals when the soil moisture was declining. Bottom panel - Estimated
curing rate (CR), i.e. rate at which herbaceous fuels transition from live to dead, vs. FAW. Error bars
indicate the uncertainty in the CR estimate due to uncertainty in the true value of live fuel moisture.
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fuels transition to dead fuels as soil moisture declines, beginning with a drop in live fuel moisture (FAW =
0.59) followed by decreased transpiration and growth (FAW = 0.40). Next, vegetative greenness declines
(FAW = 0.36), which culminates in rapid fuel curing as soil moisture conditions continue to deteriorate
(FAW = 0.30). Reproduced from Krueger et al. manuscript (under review at IJWF).



The current situation:

A growing body of research provides strong evidence that soil
moisture is a key predictor of wildfire danger that has not yet
been effectively integrated into fire danger rating systems.

Selected discoveries from other groups/other regions:

* Soil moisture (in situ) was strongly correlated with live fuel
moisture for shrubs in Italy (Pellizzaro et al., 2007).

* High soil moisture conditions (remotely sensed) limit the
extent of forest fires in Siberia (Bartsch et al., 2009).

* Low soil moisture conditions (modeled) are strongly associated
with large wildfires in Florida (Slocum et al., 2010).

* Remotely sensed soil moisture can be used to estimate live
fuel moisture within ~20% across the US (Lu and Wei, 2021)

e Soil moisture influences dead fuel moisture and fire risks in
forests (e.g., Rakhmatulina et al., 2021 and others).
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Figure caption: Predictions of wildfires (red) based on
available soil water for forested portions of western
North America in 2004, along with the locations of
MODIS active fire hotspots (black dots) for the same
period. (Waring and Coops, 2016).
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Some key remaining questions:

How can we best represent soil
moisture (absolute values, FAW,
anomalies, percentiles, etc.)?

What are the most relevant soil
depths to consider?

How can in situ, remotely sensed,
and modeled soil moisture data
best be utilized?

How can soil moisture conditions
predict burning of organic soils?

How do soil moisture conditions
influence prescribed fires?

How can wildfire professionals be
convinced and enabled to use soil
moisture information?
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Figure caption: Flow chart representing the 2016 version of the US National Fire Danger Rating
System (Jolly, 2018). Possible uses of soil moisture information for improved wildfire danger rating
are presented in gray boxes.


https://gacc.nifc.gov/eacc/predictive_services/fuels_fire-danger/documents/Overview of NFDRS2016 and Implementation and Evaluation.pdf
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Soil Physics Toolbox

Explore our websites and get in touch
tyson.ochsner@okstate.edu
http://soilmoisture.okstate.edu/
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Green live vegetation
appears as white
Other background elements olc
appear as black pixels

The default value typically results in an
excellent approximation of green canopy cove!
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