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A decade-long journey of discovery:
• Soil moisture affects growing-season wildfire size in the 

southern Great Plains. (Krueger et al., 2015)

• Concurrent and antecedent soil moisture related 
differently to wildfire in different seasons. 
(Krueger et al., 2016)

• Soil moisture is a better growing-season wildfire 
predictor than KBDI, a widely used drought index. 
(Krueger et al., 2017)

• Grassland fuel moisture and curing are strongly linked to 
soil moisture. (Sharma et al., 2020)

• Soil moisture information can help improve predictions 
of grassland fuel loads. (Krueger et al., 2021)

Our motivating question:

How can increasingly available soil moisture information be used to better manage the 
impacts of fire on people and ecosystems?

Figure caption: Andres Patrignani installing sensors to investigate 
the effects of soil moisture on grassland fuel bed conditions. 
Oklahoma State University Range Research Station, 2012.

https://acsess.onlinelibrary.wiley.com/doi/full/10.2136/sssaj2015.01.0041
https://www.publish.csiro.au/WF/WF15104
https://acsess.onlinelibrary.wiley.com/doi/full/10.2136/sssaj2017.01.0003
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Model for grassland fuel load

• First step – estimate evapotranspiration (ETc)
‒ FAO-56 dual crop coefficient method
‒ Scaling of reference ET (ET0)

• Second step – estimate biomass 
‒ Transpiration normalized by ET0

‒ Cumulative normalized Tc linearly related to 
biomass production

• Model cal/val for MOISST site
‒ Evapotranspiration measurements (ETc)
‒ Grassland productivity measurements
‒ With and without direct insertion of soil 

moisture data

• Statewide testing
‒ Predict grassland productivity/fuel load 
‒ 25 counties, 3 years each

Figure caption: Flow-chart for grassland productivity/fuel load model.
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ET calibration/validation

• Calibration period
‒ 2013 – 2015
‒ NSE = 0.79 w/o FAW
‒ NSE = 0.87 w/ FAW

• Validation period
‒ 2016 – 2017
‒ NSE = 0.84 w/o FAW
‒ NSE = 0.81 w/ FAW

Figure caption: One-week average modeled ETc, measured ET, and PhenoCam green chromatic 
coordinate (GCC) at the Marena, Oklahoma, In Situ Sensor Testbed (MOISST) 2013-2017. Modeled 
ETc values used measured soil moisture instead of a simulated water balance (calibrated + FAW).



Biomass calibration

• Water productivity constant
‒ 45 kg ha-1

‒ no literature comparisons
‒ further testing warranted

• Biomass/fuel production
‒ model reflects within 

season dynamics

Figure caption: Accumulated above ground biomass (AGB) as a 
function of the sum of the daily ratio of modeled (calibrated + 
FAW) crop Transpiration (Tc) and reference evapotranspiration 
ET0 from the mechanistic model, with the slope of regression 
line representing water productivity (WP) for the grass crop 
(panel a).  Modeled and measured AGB accumulation rate at the 
MOISST site in 2013 (panel b).



Statewide model 
validation

• With soil moisture data insertion, 
model effectively predicted hay 
yield/grassland productivity/fuel 
load
‒ NSE = 0.65
‒ MAE = 270 kg ha-1

• Without soil moisture data 
insertion, poorer predictions
‒ NSE = 0.10
‒ MAE = 475 kg ha-1

• A step towards dynamic 
herbaceous fuel load models

Figure caption: Measured vs. modeled county level wild hay yield in Oklahoma in 2002, 
2007, and 2012 for the calibrated model with direct insertion of soil moisture data 
(calibrated + FAW).  



Grassland fuel moisture 
strongly linked to soil moisture

• Declining FAW, Jun-Aug 2012

• Wildfire outbreak 3 Aug, 2012, when 
FAW = 0.24, burned >34,600 ha

• GFM and MFM declined with FAW, 
minimums coincident with wildfire

• Generally higher FAW and fuel 
moisture values in 2013

• Rapid declines in September 2013

Figure caption: Time series of fraction of available water capacity (FAW) for 
the 0–40-cm layer, green fuel moisture (GFM), fuel moisture of the mixed live 
and dead herbaceous fuels (MFM), and dead fuel moisture (DFM), grouped 
by burn date (the date the sampled patch was burned). 



Relationship of FAW to MFM and 
curing rate
• Strong linear relationship between MFM 

and FAW, when FAW < 0.59 and declining

• Strong inverse linear relationship between 
curing rate and FAW, when FAW < 0.3 

• Maximum curing rate 12.6 g m-2 d-1 from 
6–16 September 2013, when FAW 
averaged 0.21. Grassland dead fuel loads 
of 70 g m-2 can propagate fire.

Figure caption: Top panel - Mixed-fuel moisture vs. fraction of available water capacity (FAW) for the 0–
40-cm soil layer for sampling intervals when the soil moisture was declining. Bottom panel - Estimated 
curing rate (CR), i.e. rate at which herbaceous fuels transition from live to dead, vs. FAW. Error bars 
indicate the uncertainty in the CR estimate due to uncertainty in the true value of live fuel moisture. 



How declining soil 
moisture leads to wildfire:

• Grassland fuel moisture 
declines when FAW < 0.60

• Grassland fuel production 
declines when FAW < 0.40

• Grassland fuel curing 
accelerates when FAW < 0.30

• Large growing season 
wildfires (in Oklahoma) occur 
primarily when FAW < 0.20 

Figure caption: Frequency distribution and probabilistic relationship between fraction of available soil 
water capacity (FAW) and large growing-season wildfires in Oklahoma from 2000–2012. Live grassland 
fuels transition to dead fuels as soil moisture declines, beginning with a drop in live fuel moisture (FAW = 
0.59) followed by decreased transpiration and growth (FAW = 0.40).  Next, vegetative greenness declines 
(FAW = 0.36), which culminates in rapid fuel curing as soil moisture conditions continue to deteriorate 
(FAW = 0.30). Reproduced from Krueger et al. manuscript (under review at IJWF).



Selected discoveries from other groups/other regions:
• Soil moisture (in situ) was strongly correlated with live fuel 

moisture for shrubs in Italy (Pellizzaro et al., 2007).

• High soil moisture conditions (remotely sensed) limit the 
extent of forest fires in Siberia (Bartsch et al., 2009).

• Low soil moisture conditions (modeled) are strongly associated 
with large wildfires in Florida (Slocum et al., 2010).

• Remotely sensed soil moisture can be used to estimate live 
fuel moisture within ~20% across the US (Lu and Wei, 2021)

• Soil moisture influences dead fuel moisture and fire risks in 
forests (e.g., Rakhmatulina et al., 2021 and others).

The current situation:

A growing body of research provides strong evidence that soil 

moisture is a key predictor of wildfire danger that has not yet 

been effectively integrated into fire danger rating systems. 

Figure caption: Predictions of wildfires (red) based on 
available soil water for forested portions of western 
North America in 2004, along with the locations of 
MODIS active fire hotspots (black dots) for the same 
period. (Waring and Coops, 2016).

https://www.publish.csiro.au/wf/wf06081
https://iopscience.iop.org/article/10.1088/1748-9326/4/4/045021/meta
https://link.springer.com/article/10.1007/s10021-010-9357-y
https://www.sciencedirect.com/science/article/pii/S0048969721004782
https://www.sciencedirect.com/science/article/pii/S0378112721004679
https://link.springer.com/article/10.1007/s10584-015-1569-x


Some key remaining questions:
• How can we best represent soil 

moisture (absolute values, FAW, 
anomalies, percentiles, etc.)? 

• What are the most relevant soil 
depths to consider? 

• How can in situ, remotely sensed, 
and modeled soil moisture data 
best be utilized? 

• How can soil moisture conditions 
predict burning of organic soils? 

• How do soil moisture conditions 
influence prescribed fires? 

• How can wildfire professionals be 
convinced and enabled to use soil 
moisture information?

Figure caption: Flow chart representing the 2016 version of the US National Fire Danger Rating
System (Jolly, 2018). Possible uses of soil moisture information for improved wildfire danger rating 
are presented in gray boxes.  
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https://gacc.nifc.gov/eacc/predictive_services/fuels_fire-danger/documents/Overview of NFDRS2016 and Implementation and Evaluation.pdf
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