Impact of Wildfires on Water Quality and Treatment

Fernando L. Rosario-Ortiz Environmental Engineering Program University of Colorado Boulder

> WestFAST Webinar September 21, 2022

Wildfires

University of Colorado Boulder

Wildfires

Wildfires

- Approximately two thirds of municipalities in the US rely on water from forested watersheds
- Wildfires can abruptly and adversely impact watersheds which generally provide high quality source water
- The effects of wildfires on a watershed are complex and long lasting

Changes in Water Quality

- Effects include:
 - Enhanced mobilization of nutrients and metals
 - Increases in turbidity
 - Changes in concentration and reactivity of dissolved organic matter
 - Algae growth and associated issues
- Responses from water treatment perspective
 - Modification of treatment steps
 - Potential upgrades to system
 - Increase monitoring

Hohner et al., 2019

Outline

- Turbidity/sediments
- Nutrients
- DOM
- DBP
- Treatment impacts
- New issues related to contamination

Turbidity/sediments

- Changes to slope vegetation result in enhanced sediment mobilization, resulting in potential for high turbidity events
- High turbidity events are triggered by rain events
- Potential impacts to infrastructure

Turbidity

Case Study: High Park Fire, 2012

Hohner et al., 2016

Turbidity

Turbidity

- Turbidity values after wildfires can be quite high, creating challenges for utilities
- Turbidity values can spike as a function of localized rain events
- Consider adding early warning systems, sedimentation basins

Hohner et al., 2016

Nutrients Exports

- It is well documented that nutrients exports can increase after a wildfire
- Impacts can be long lasting and related to severity

Rhoads et at., 2006

Nutrients Exports

Nutrients Exports

 Enhanced mobilization of nutrients can result in eutrophication

Rhoades et al., 2018

Dissolved Organic Carbon

- DOC is a complex mixture of organic compounds found in surface waters
- DOC impacts different aspects of treatment process
- DOC dynamics in watersheds after wildfire are complex

Dissolved Organic Carbon

Dissolved Organic Carbon

- DOC mobilization does show a distinct temperature profile
- Previous work done on soils (mineral layer) indicate that the mobilization of DOC resembles a gaussian distribution
 - For litter (organic layer), the effects of temperature are more complex

Laboratory Simulation

- Soil sampling
 - Boulder county
- Processed samples
 - Drying at 100 °C
 - Homogenization
 - Heating for 2 hours at given temperature
 - Leached into laboratory water and filtered

Wilkerson and Rosario-Ortiz, 2021

 DOC mobilization trends have been observed numerous times in lab and field experiments

Rhoades et al., 2018

Modeling of DOC

 Analyzing sedimentation and water quality response in a 3D matrix of controls

Brucker et al., In Prep

Modeling of DOC

- Study location: the Cache la Poudre Basin near Fort Collins, CO
- Soil samples collected with intact soil structure in steel containers

Wildfire Simulation

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 Time (min)

Rainfall Simulation

 Created variable-intensity rainfall simulator, closely approximating natural rainfall kinetic energy, droplet size, and distribution

Total Organic Carbon vs. Burn Severity

Simulation confirms lab and field work

Will expand to look at sediments

- Enhanced mobilization of DOC at some temperatures
- How different is this DOC?
- We have performed enhanced analytical work to understand DOC mobilization
 - Using NMR and MS

CHO Class Abundance Comprised of Few Formulas at High Intensities (BPCAs)

	Benzen	e Polycarbo	cylic Acids	Pyridin	e Polycarbo	cylic Acids
		BPCAs			PPCAs	
		Isomers	Detected		Isomers	Detected
		1.2.0204	•	P2CAs	2,3-P2CA	•
		1,2-DZCA			2,4-P2CA	•
	DOCAL	1 4 0304	•		2,5-P2CA	•
2-COOH	BZCAS	1,4-BZCA			2,6-P2CA	•
		1.2.0204			3,4-P2CA	•
		1,3-BZCA	•		3,5-P2CA	•
		1.2.4.0204			2,3,4-P3CA	٠
		1,2,4-B3CA	•	P3CA s	2,3,5-P3CA	•
2 60011	B3CA s	1,2,3-B3CA			2,3,6-P3CA	•
3-COOH			•		3,4,5-P3CA	•
		1,3,5-B3CA			2,4,5-P3CA	•
			•		2,4,6-P3CA	•
	B4CAs	1,2,4,5-B4CA	٠		2,3,5,6-P4CA	•
4-соон		1,2,3,4-B4CA	•	P4CAs	2,3,4,5-P4CA	•
		1,3,4,5-B4CA	•		2,3,4,6-P4CA	•
5 -COOH	B5CA		•	P5CA		•
6-СООН	B6CA		•	1		
		СООН			N	соон

Thurman et al., 2020

30

	100%						
	Retention Time (min)	lons	Accurate Mass	Measured Mass	Accuracy (ppm)	80%	
3,5-P2CA	3.990	[MH-HCOOH]+	122.0237	122.0236	0.82	%) S:	
		[M+H]*	168.0291	168.0292	0.60	func 60%	
		[M+Na]+	205.9761	205.9759	0.97	ŭ	
						40%	

Field Data

Compounds detected in ash leachates and water samples. Retention time, chemical structure, observed ions, and their corresponding accurate mass are shown. Black is in positive ion mode and red is in negative ion mode. Putative identifications of compounds found in ash leachates and water samples. The chemical structures, observed ions, and their corresponding accurate masses are shown. Black is in positive ion mode and red is in negative ion mode.

Compound	Ret. time	Chemical Structure	+Ion/-Ion	Calculated Ac	Compound	Chemical Structure	+Ion/-Ion	Calculated A Mass of m/
compound	(min)			Mass of m/z	Quinoline	СООН	[MH] ⁺	174.0550
1,2-BPCA	11.3	СООН	[M-H+2Na] ⁺	210.9978	monocarboxylic	N N	[MH-CO ₂] ⁺	130.0651
(phthalic acid)			[M+Na] ⁺	189.0158	acids		[MH-HCOOH] ⁺	128.0495
<i>a</i> ,		СООН	[MH-H ₂ O] ⁺	149.0233			[MIN-CO2-CH2-CH]	103.0339
			[M-H] ⁻	165.0193			D (III)+	210.0440
			M-H-CO ₂]	121.0295	Quinoline disarbarrulia asida	СООН	[MH] ⁺	218.0448
			[M-H-2 CO ₂] ⁻	77.0397	dicarboxyfic acids		$[MH-HCOOH]^+$	128 0495
1,2,4-BPCA	6.1	СООН	[M-H+Ca] ⁺	248.9709				120.0495
			[M+Na] ⁺	233.0057				
		СООН	[MH-H ₂ O] ⁺	193.0131		Соон Соон		
			$[MH-2H_2O]^+$	175.0026	Naphthoic acid	СООН	[M-H]-	171.0452
			[MH-HCOOH] ⁺	165.0182	ruphinore ueru		[M-H-CO ₂] ⁻	127.0553
			[M-H] ⁻	209.0092				
			[M-H-CO ₂] ⁻	165.0193				
		СООН	[M-H-2CO ₂] ⁻	121.0295	Nonhtholono		DA III-	215.0250
1,2,3-BPCA	8.8	СООН	[M-H+2Na] ⁺	254.9876	dicarboxylic acids	соон	[M-H] [M-H-CO₂]⁻	171 0452
		00011	[M+Na] ⁺	233.0057	uleuroony ne uerus		[M-H-2CO ₂]	127.0553
		СООН	$[MH-H_2O]^+$	193.0131				
			$[MH-2H_2O]^+$	175.0026				
			[M-H] [_]	209.0092	No. 1 (1 - 1			250.0249
		Соон	[M-H-CO ₂] [−]	165.0193	Naphthalene	СООН СООН		259.0248
			[M-H-2CO ₂] ⁻	121.0295	u icai boxyne acius		[M-H-2CO ₂]	171 0452
1,3,5-BPCA	9.9	СООН	$[M-H+2Na]^+$	254.9876			[M-H-3CO ₂]	127.0553
			$[M-H+Ca]^+$	248.9709		СООН		
			[M+Na] ⁺	233.0057				
			$[M+H]^+$	211.0237	Benzofuran	0	[M-H] ⁻	161.0244
			$[MH-H_2O]^+$	193.0131	monocarboxylates		[M-H-CO ₂] ⁻	117.0346
		HOOC ~ COOP	[M-H] [_]	209.0092				
			$[M-H-CO_2]^-$	165.0193		~		
			[M-H-2CO ₂] ⁻	121.0295		СООН	D (III	005.01.40
3,5-PCA	3.9	N N	$[M+H]^+$	168.0291	dicarboxylates	СООН	[M-H] [M-H-CO-]-	205.0142
			$[MH-H_2O]^+$	150.0186	dicarboxylates		[M-H-2CO ₂]	117.0346
			[MH-HCOOH] ⁺	122.0237				
		ноос 💛 Соо	[M-H]⁻	166.0146				
			[M-H-CO ₂] ⁻	122.0248				
			$[M-H-2CO_2]^{-1}$	78.0349				

DBPs

• The impact on DBP formation is also complex, showing different temperature dependencies based on temperature

DBP Formation-Field Data

DBP Formation-Field Data

Results for **PRP** Mobilization

Wilkerson and Rosario-Ortiz, 2021

Impact of Wildfire on Water Treatment

Becker, et al., JAWWA 2018

Case Study: High Park Fire, 2012

Hohner et al., 2016

Water Treatment

				Delta		
Treatment P	arameter	Water Intake	Control	(intake-control)		
Alum Dose	Mean	44	34	9.6		
(mg/L)	Median	45	28	7.5		
Treated Water	Mean	1.6	1.4	0.2		
DOC (mg _C /L)	Median	1.4	1.3	0.2		
Treated Water	Mean	0.032	0.027	0.005		
UV ₂₅₄ (cm ⁻¹)	Median	0.024	0.023	0.004		

Performance of coagulation

NY Times, October 2, 2020

University of Colorado Boulder

NIV Timon October 2 2020

University of Colorado Boulder

	Exposure and public notification limits				Tubbs FireCamp Fit(21 months post-fire)(8 month)		Fire nths po	re 1s post-fire)			
	Long-term limits		Short-term limits		City of Santa Rosa		PID		SWR CB in PID	DOWC (three systems) ^a	
Chemical	US ^b	California ^c	HA ^d	NL ^e	n	Max	n	Max	n = 1	n	Max
Benzene	5	1	200, 26 ⁱ	—	8,387	40,000	1,699 ^f	923	>2,217	200 ^g 40/20/140	530 <i>8.1/5.3/530</i>
Dichloromethane	5	200	10,000	_	6,254	41	\mathbf{NA}^{h}	28	_	NA	_
Naphthalene	_	100	500	17	661	6,800	NA	278	693	NA	_
Styrene	100	100	20,000	—	6,227	460	NA	6,800	378	NA	_
Tert-Butyl alcohol	_	_	—	12	339	29	NA	600	_	NA	_
Toluene	1,000	_	20,000	—	8,387	1,130	NA	1,400	676	NA	_
Vinyl chloride	2	_	3,000	_	6,227	16	NA	0.8	_	NA	_

Proctor, et al., AWWA Water Science, 2020

What about sources within the watershed?

University of Colorado Boulder

- Collected samples from Cameron Peak fire
- Developed methods for 12 compounds
- Analyzed several samples collected from the watershed

	Pingree Blackwater	Blak 5-	Shep	Pono	FCW Blackwater	Chuck's Ditch
Compound	7-1-21	18-21	5-18-21	5-18-21	No Date	6-25-21
3,5-PCA	2.0	<0.025	<0.025	<0.025	<0.025	<0.025
1,2,4-BPCA	174	0.20	0.33	<0.025	1.01	1.24
1,2,3-BPCA	67	<0.15	0.06	<0.15	0.17	0.23
1,3,5-BPCA	20	<0.15	<0.15	<0.15	<0.15	<0.15
1,2-BPCA	43	<0.25	<0.25	<0.25	<0.25	<0.25
1,4-BPCA	13	<0.50	<0.50	<0.50	<0.50	<0.50
1,3-BPCA	28	<0.50	<0.50	<0.50	<0.50	<0.50
3-Methyphthalic Acid	2.3	<0.20	<0.20	<0.20	<0.20	<0.20
1,4-Naphthalene Dicarboxylic Acid	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
2,6Naphthalene Dicarboxylic Acid	0.38	<0.05	<0.05	<0.05	< 0.05	<0.05
4,4'-Biphenyl Dicarboxylic Acid	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2,2'-Biphenyl Dicarboxylic Acid	0.22	<0.05	<0.05	<0.05	<0.05	<0.05

Summary

- Wildfires impact water quality and treatment
 - Enhanced nutrient and DOC mobilization
 - Changes in DBP formation
 - Enhanced treatment costs
- Additional work is still needed to continue to improve our understanding of the complex effects of wildfires on water quality and treatment

Acknowledgements

- University of Colorado: Amanda Hohner, R. Mike Thurman, Imma Ferrer, Scott Summers, Dorothy Noble, John Meyer, Jeff Writer, Jackson Webster, Ariel Retuta, Yun Yu, Garrett McKay, Kylie Couch, Tyler Kurtz, Leigh Terry, Eli Townsend, and others.
- Deb Martin at USGS and Chuck Rhoades at USFS
- Funding from the Water Research Foundation, Colorado Department of Public Health and Environment, US EPA, National Science Foundation, Army Research Office
- Participating Utilities: Denver Water, Fort Collins, New York, San Francisco, Northern Water, Aurora, Westminster

fernando.rosario@colorado.edu

University of Colorado Boulder