Water Quality Permits for Large Projects in Alaska Presented to: 2023 Western States Water Council Anchorage, Alaska September 13, 2023

Dan Graham, General Manager, Donlin Gold Ron Rimelman, VP EHS, NOVAGOLD

Project Location

Project Description

- Alaska's Water Quality Standards What they are and what applies
- $\,\circ\,$ Example of a Permit Timeline
 - Baseline Data Collection
 - Permit Application and Processing
 - Compliance, Monitoring and Renewals
- Challenges
- Working on Alaska Native Lands Valued Partners

Alaska's Water Quality Standards

E	nter the appropri	ate Hardness v	value for the wate	r you are intereste	ed in:	25	mg/L as CaCO	3 ****			Calculation adapted from input calciun Calcium:	of Hardness Standard Meth and magnesic 3.28	ods, I <i>Im co</i>	Method 2340B	units in mg/L
all units in microgram	is per liter (ug/L)			colo	or key:	orange yellow highligh	highlighting: the m ting: the criterion d	ost stri epend	ngent criterion s on the hardness		Magnesium:	10.4	<u> </u>	Resulting Hardness all units in microg	51.0 rams per liter (ug/L)
					Aquatic Life-Fresh Water						Human Health Criteria for Ni				a for NonCarcinogens
						Acute					Chronic				
Parameter	Drinking Water	Stockwater	Irrigation Water	the criterion is	as	using the conversion factor	the criterion is	as	the criterion is	as	using the conversion factor	the criterion is	as	Water + Aquatic Organisms	Aquatic Organisms Only
alkalinity									20,000 minimum						
aluminum			5,000	750	TR				87	TR					
antimony	6													14	4,300
arsenic	10	50	100	340	TR	1	340	D	150	TR	1	150	D		
barium	2,000														
beryllium	4		100												
boron			750												
cadmium	5	10	10	0.52	TR	1.002	0.52	D	0.10	TR	0.967	0.09	D		
chloride				860,000					230,000						
chlorine (total residual)				19					11						
chromium (total)	100		100												
chromium III				579.32	TR	0.316	183.07	D	27.69	TR	0.86	23.81	D		
chromium VI		50		16	D				11	D					
cobalt			50												
copper			200	3.79	TR	0.960	3.64	D	2.85	TR	0.960	2.74	D	1,300	
cyanide (as free CN)	200 *			22 **					5.2 **					700	220,000
fluoride	4,000		1,000												
iron			5,000						1,000						
lead		50	5,000	13.98	TR	0.993	13.88	D	0.54	TR	0.993	0.54	D		
lithium			2,500												
manganese			200											50	100
mercury	2			1.4	D				0.77	D				0.05	0.051
molybdenum			10												
nickel	100		200	145.21	TR	0.998	144.92	D	16.14	TR	0.997	16.10	D	610	4,600
nitrate (as N)	10,000														
nitrite (as N)	1,000														
nitrate + nitrite	10,000														
selenium***	50	10	20	1/[([selenite]/185.9) +([selenate]/12.83]	TR	0.922		D	5	TR	0.922	4.60	D	170	11,000
silver				0.37	TR	0.850	0.32	D							
thallium	2													1.7	6.3
vanadium			100												
zinc			2,000	37.02	TR	0.978	36.20	D	37.02	TR	0.986	36.50	D	9,100	69,000

Alaska's Water Quality Standards

- Different standards have been developed for different uses – Drinking water (applied to surface waters too), Stockwater, Irrigation, Aquatic Life (both acute and chronic as well as a mix of total and dissolved), and 2 sets of human health criteria
- > This makes for up to 9 sets of criteria
- Because all waters have been designated for all uses, the most stringent criteria for each constituent is applied for permitted discharges

Environmental Baseline Studies Programs

- Air quality
- Cultural Resources
- Fish and Aquatic Resources
- o Geochemistry
- o Geotechnical
- Hydrology/Ground and Surface Water Quality
- \circ Land Use
- Marine and River
- Mercury
- o Noise

- Public Health
- Recreation
- Snow Surveys
- Socioeconomics
- Stream and sediment
- Subsistence
- Vegetation
- Visual Aesthetics
- Wetlands
- Wildlife

Planning for an Environmental Program

- \circ Start early.
- Figure out data needs
 - Think through your permitting (e.g., NEPA), engineering, and future monitoring needs.
 - For water quality, understand the standards and ensure the baseline work will support all constituents (start broadly)
 - Talk to the agencies and present the baseline collection program in advance to get agency comments, views and perspectives
 - <u>Communicate with your stakeholders about project concerns, including those that oppose the project.</u>
- \circ $\,$ Form a good team $\,$
 - Field and office staff
 - Consultants
 - Labs
- Systems are a key to success

Environmental Studies Timeline

Surface Water Sampling Program

Legend

Inactive Sampling Station Active Sampling Station

Sampling Progression

ltem	NEPA	APDES
Baseline Data Collection		2006
EIS Scoping Process	2012	
Initial Meeting with ADEC and EPA		Oct 2014
Proposed permit approach to ADEC/EPA		July 2015
Draft EIS	Nov 2015	
Submit draft application		Nov 2015
Draft Permit Issued		Dec 2017
Public Comment Period		Dec 2017-Feb 2018
Final EIS Published	April 2018	
APDES Permit Issued		May 2018

Compliance, Monitoring and Renewals

Table 3 Donlin Operations Water Treatment Plant Discharge, Outfall 001 Pollutant Maximum Concentrations, Maximum Mass, and Average Daily Mass

Constituent Unit		Maximum Concentration in WTP Effluent ⁽²⁾	Maximum Mass Discharge ⁽⁴⁾ (kg/day)	Average Mass Discharge, First 10 Years of Operation ⁽⁵⁾ (kg/day)	Source (ADEC Engineering Study Code)	
Aluminum	mg/L	<0.05	1.0	0.54	2	
Ammonia	mg/L	<0.5	10	5.4	2	
Antimony	mg/L	<0.005	0.10	0.054	2	
Arsenic	mg/L	<0.006	0.12	0.065	2	
Barium	mg/L	<0.4	8.2	4.3	2	
Beryllium	mg/L	<0.00059	0.012	0.0063	See Note 6	
Boron	mg/L	<0.05	1.0	0.54	2	
Cadmium	mg/L	<0.0001	0.0020	0.0011	2	
Calcium ⁽²⁾	mg/L	<240	4896	2580	2	
Chloride	mg/L	4	20	11	2	
Chromium, total	mg/L	<0.002	0.041	0.022	2	
Cobalt	mg/L	<0.001	0.020	0.011	2	
Copper	mg/L	<0.001	0.020	0.011	2	
Fluoride	mg/L	<0.4	8.2	4.3	2	
Iron	mg/L	<0.05	1.02	0.54	2	
Lead	mg/L	<0.001	0.020	0.011	2	
Lithium	mg/L	<0.17	3.5	1.8	See Note 6	
Magnesium ⁽²⁾	mg/L	<240	4896	2580	2	
Manganese	mg/L	<0.05	1.02	0.54	2	
Mercury	mg/L	<0.000012	0.00024	0.00013	2	
Molybdenum	mg/L	<0.005	0.10	0.05	2	
Nickel	mg/L	<0.005	0.10	0.054	2	
Nitrate	me/L	<5.1	104	33	See Note 6	
Potassium	mg/L	<120	2448	1290	See Note 6	
Selenium	me/L	<0.0048	0.10	0.052	2	
Silicon	mg/L	<19	388	204	See Note 6	
Silver	me/L	<0.0009	0.018	0.010	See Note 6	
Sodium ⁽²⁾	mell	<240	4896	2580	2	
Streetium	ms/1	(79	161		See Note 6	
Sulfate	me/1	<50	1224	643	2	
TDS	m5/L	-240	4000	3890		
Thallium	mg/L	<0.00058	4030	0.0052	See Note 6	
		<1	20	11	2	
155 Vanadium	mg/L	<0.0024	20		Can Note C	
WAD Ovanide	mg/L	<0.005	0.1/	0.054	see Note 6	
Tion Star	mg/L	<0.02	0.41	0.22		
Zinc (i)	mg/L	<5.0	120	73	Case porte 2	
Biochemical Oxygen Demand	m5/L	42.4	137	/3	See note 3	
Chemical Oxygen Demand	mg/L	<12.4	235	155	See note 3	
Total Organic Carbon ⁴⁴	mg/L	<4.24	86	46	See note 3	

- Predicted Compliance based on Reasonable
 Potential Analysis of numerous constituents
 initial permit relies on very conservative
 estimates from modeling
- Initial permit contains many constituent limits
- Samples gathered at discharge (1 location) and from numerous stream locations and various intervals and submitted to agencies
- As operations advance and data is gathered and analyzed, limits may be adjusted in subsequent permits or removed if not present
- Requires renewal every 5 years

Compliance, Monitoring and Renewals

Water management at large mine operations can be very complex and requires a full-time team to oversee and operate

Monitoring is not only required at the discharge, but includes monitoring of the aquatic and hydrologic environment of the entire drainage

Donlin also submitted an Aquatic Resource Monitor Plan to ADF&G for watershed aquatic resources that will supplement the water discharge monitoring requirements in the APDES

Water Quality Standards

- Alaska has among most stringent water quality standards in US, presents significant challenges for permittees particularly since site-specific criteria and use removal are very difficult to obtain
- All surface waters are protected for all uses, especially problematic because there is very little actual or potential drinking water use in rural Alaska and a number parameters (e.g., arsenic) are naturally found above drinking water/consumption standards
- There are provisions that allow for natural background consideration but difficult to implement generally because of highly variable levels of metals (driven by TSS)
- As a result, Alaska permittees such as Donlin are often required to treat water to levels much cleaner than the baseline conditions – Donlin must use RO for most of wastewater
 - In a State when many communities do not even have secondary treatment

Water Quality Standards (continued)

- Like other Region 10 states, EPA has pushed Alaska to update its Human Health Criteria (HHC)
 - In large part this is driven by the significant quantities of fish caught and consumed, including for subsistence, by rural/Native Alaskans
 - Salmon specifically are consumed at very high levels more than just food but part of the culture of our region
 - Revisions to fish consumption numbers make sense but public does not see the implications for permittees and watershed assessment
 - For Donlin(and other mines), arsenic (potential HHC well below background) and mercury (naturally occurring and HHC tissue based) could be especially difficult to implement, variances only provide near term relief

Water Programs – Current and Potential Future Issues

- Mitigation for wetlands impacts under 404 challenging in western Alaska where most wetland areas are pristine, we were able to use some reclamation of historic placer areas but otherwise pushed to preservation where greater benefit could be provided by water, wastewater, and solid waste projects in communities (do not fit traditional Corps "credit" methodologies)
- Water quality is a major driver in Federal permitting for mines, while the State in theory has lead for protection, Federal agencies typically have their own (and frequently conflicting views) on how it should be addressed, often takes years to resolve and creates significant litigation risk.
- Permafrost presents Alaska-specific WOTUS questions under Sackett as a barrier to direct hydraulic connection
- Concerns over expected EPA Maui guidance mines typically interact with groundwater, will the guidance overwhelm permittees and agencies with technical requirements not equipped to address
- EPA suggestions that broader environmental justice concerns (e.g., fair labor practices) could be used to delay or stop discharge permit issuance

Public Perceptions and Communication

- Dialogue with agencies on water quality issues is often highly technical (bases for criteria, modeling, risk assessment, etc.), NEPA and permit documents frequently assume high level of scientific expertise
 - Regulations can also be very complicated to apply
- For projects in western Alaska, most stakeholders have high school education or less with limited technical and regulatory knowledge
 - And mere mention of parameters like mercury, cyanide, arsenic, etc. raises significant concerns, NGOs are especially adept at perpetuating such fears where we operate
- Much of this is on us but would be helpful if agencies had greater capabilities/resources to communicate with public on key risk areas and how they are being addressed, agency conflicts to not help
 - Our partnerships with Alaska Native Corporations are especially helpful in establishing stakeholder trust although significant capacity building is necessary

Working on Alaska Native Lands – A Valued Partnership

17

Donlin Gold Field Environmental Team

