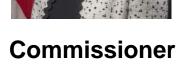
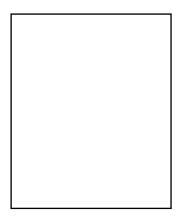


Federal Energy Regulatory Commission Hydropower Program Overview

Federal Energy Regulatory Commission

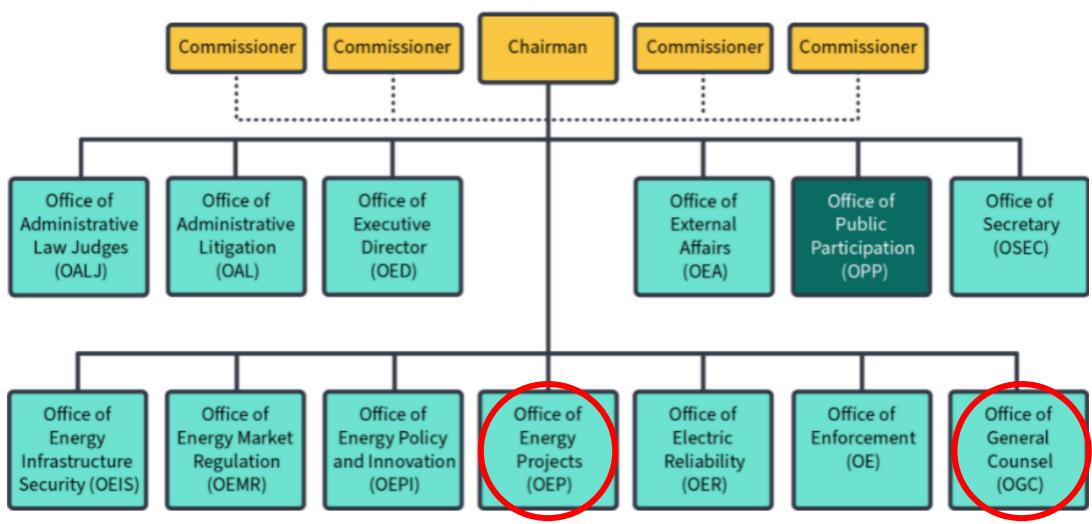


Chairman Willie L. Phillips



Commissioner James Danly

Commissioner **Mark Christie Allison Clements**



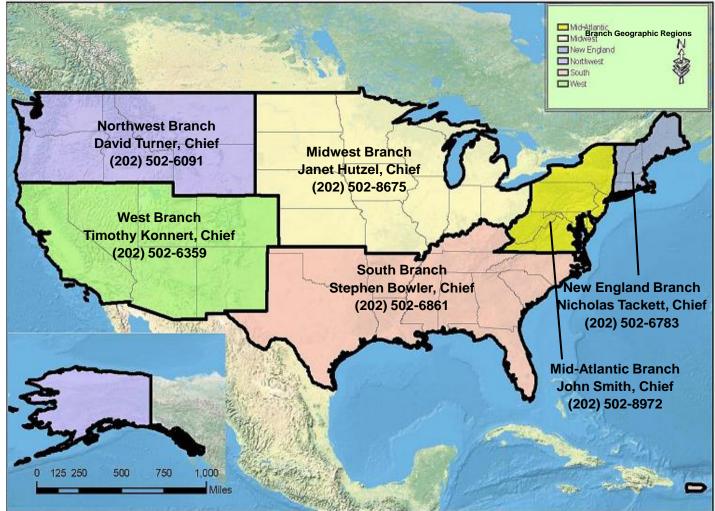
Empty

- Independent Regulatory Commission
- Five members appointed by President, confirmed by Senate
 - Supported by 13 offices

FERC Organization

FERC Hydropower Program Overview

- Evaluate *non-federal* hydropower projects, giving equal consideration to environmental, recreational, cultural, and developmental resources
- Provide assistance to, and foster coordination among, applicants and stakeholders
- Prepare and issue NEPA documents
- Ensure compliance with terms of Commission licenses and exemptions during construction and operation
- Ensure safety of non-federal hydropower dams


FERC's Hydropower Program: Who are the players?

♦ 🗲 🛞 💧

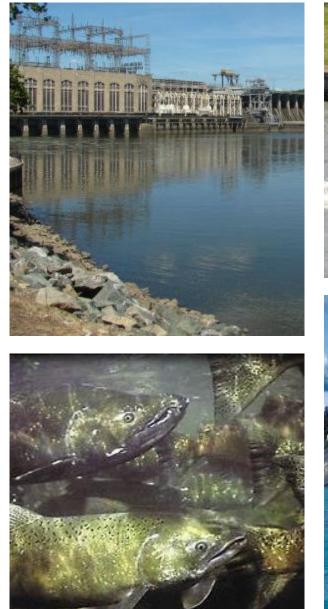
Division of Hydropower Licensing (DHL)

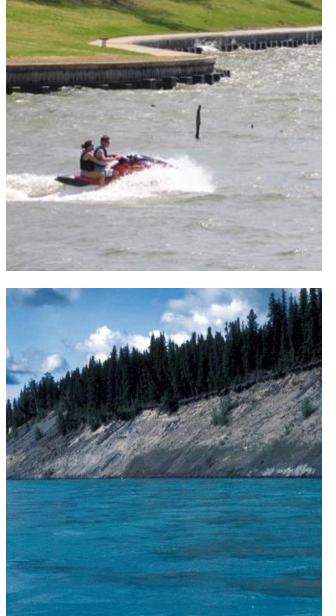
- Process hydropower project applications
- Prepare and issue environmental documents
- Address agency, tribe, and public concerns
- Analyze recommendations and incorporate reasonable environmental conditions into licenses

Administration and Compliance

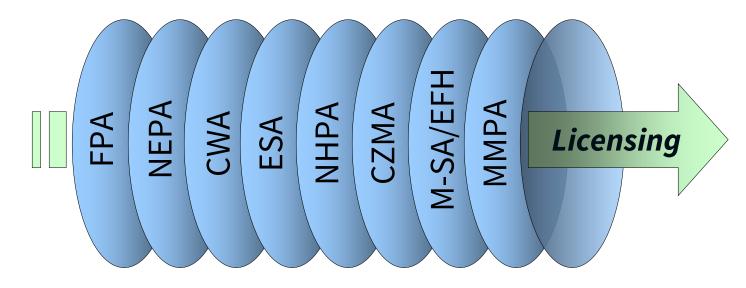
- Ensures compliance with license/exemption order
- Investigates non-compliance allegations
- Tracks license requirements
- Approves plans and reports
- Processes amendments to licenses
- Processes surrenders applications
- Makes jurisdictional determinations

Dam Safety & Inspections


Responsibilities:


- Implement dam and public safety programs
- Ensure protection of life, property, and the environment
- Develop policies, programs, and guidelines for assessing dam safety
- Assess physical and cyber security measures at hydroelectric facilities

Headquarters: Washington, DC


Federal Power Act Part I - Jurisdiction

- Commission authorization is required for non-federal hydropower projects:
 - located on navigable waters;
 - located on federal lands;
 - using surplus water from a federal dam; OR
 - located on non-navigable waters over which Congress has Commerce Clause jurisdiction, were constructed or modified after 1935, and affect interstate or foreign commerce.
- Projects may be located at federal dams (U.S. Army Corps of Engineers or Bureau of Reclamation), but Commission only has jurisdiction over the non-federal facility (not the federal dam/project).

Federal Power Act Licensing Standards

- Section 4(e) Equal Consideration
- Section 10(a) Comprehensive Development
- Section 10(j) State and federal fish and wildlife agency recommendations
- Section 10(a)(2) Consistency with comprehensive plans
- Mandatory Conditions
 - Section 18 Fishway Prescriptions
 - Section 4(e) Reservations (i.e., NFSL)

Other Laws and Regulations

- National Environmental Policy Act (NEPA)
- Clean Water Act (CWA)
- Endangered Species Act (ESA)
- National Historic Preservation Act (NHPA)
- Fish and Wildlife Coordination Act
- Magnuson-Stevens Fishery Conservation and Management Act

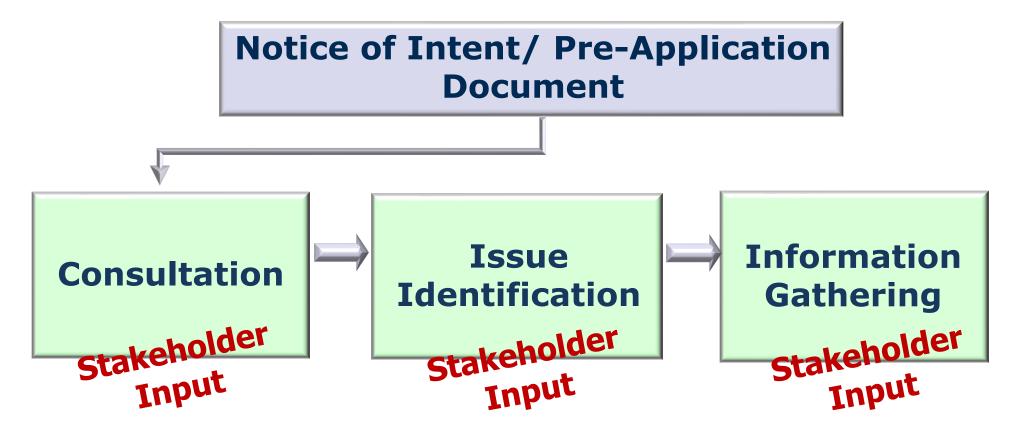
- Marine Mammals Protection Act
- Pacific Northwest Power Planning and Conservation Act
- Coastal Zone Management Act (CZMA)
- Wild and Scenic Rivers Act
- Bureau of Reclamation Statutes

Environmental Concerns vs. Developmental Concerns

Types of Authorizations

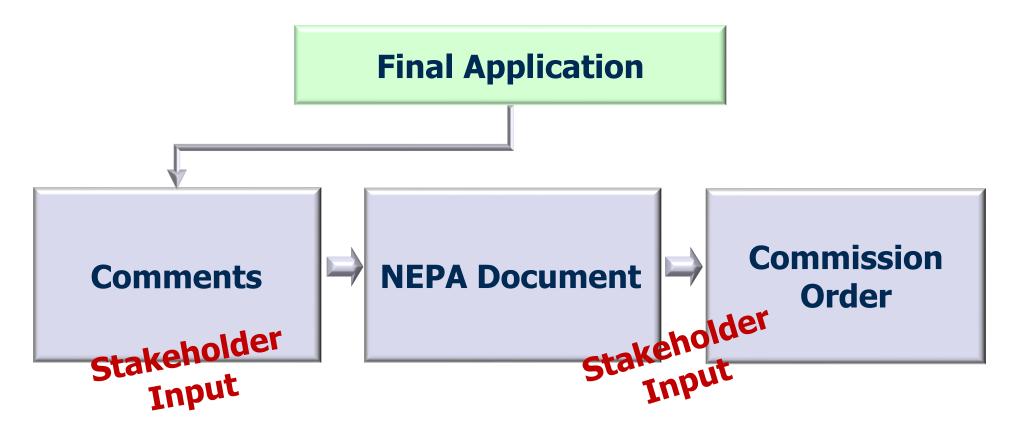
Preliminary Permit

- Does NOT authorize construction or operation
- Maintains priority of application for 4 years with option to extend an additional 4 years
- Requires feasibility studies and pre-filing activities


License: Original or Relicense, or Pilot

- Authorizes construction and operation
- Issued for 30-50 years (default is 40 years)
- *Exception*: Pilot licenses are issued for 8-10 years

Exemptions: Conduit and 10 MW

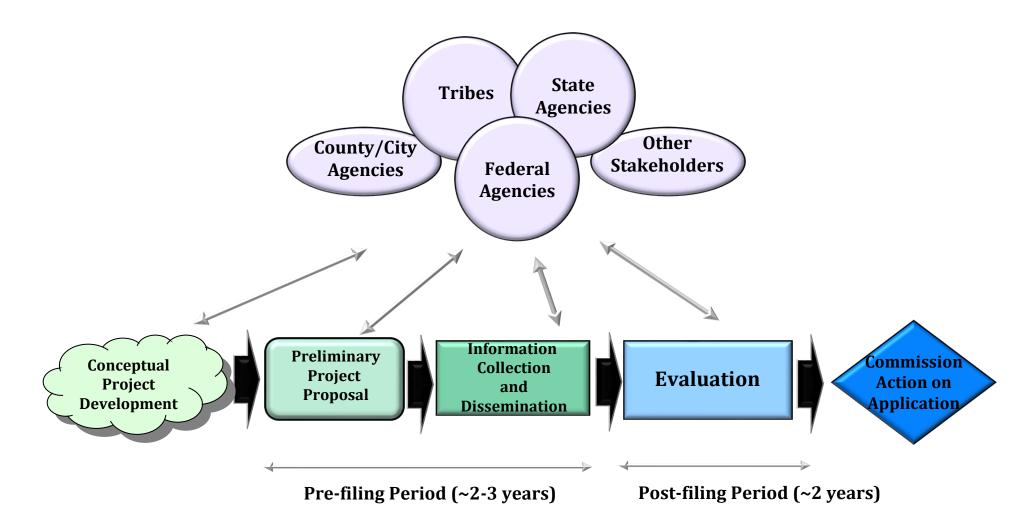

- Authorizes construction and operation
- Issued in perpetuity

Basic Licensing Steps Pre-filing

Basic Licensing Steps *Post-filing*

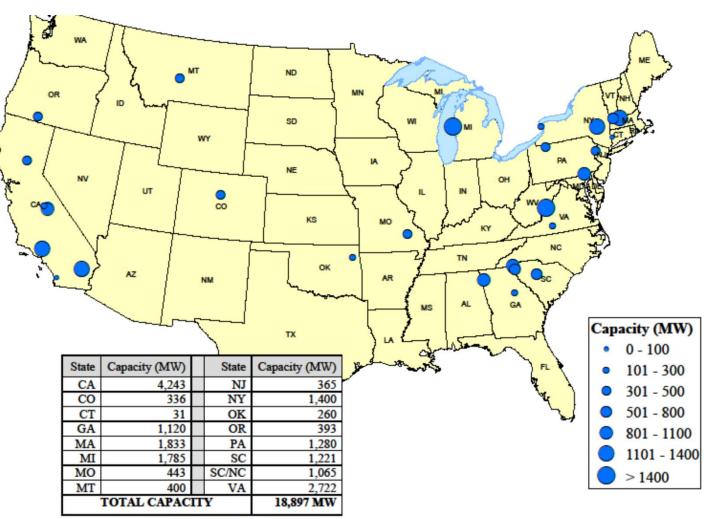
Licensing Process Comparison

Process	Consultation	FERC Involvement	Deadlines	NEPA Scoping	Study Plan Development	Study Dispute Resolution	Additional Study/ Information Requests	Timing of Resource Agency Terms & Conditions
Integrated Licensing Process (ILP) DEFAULT	Collaborative	Pre-filing: Sustained	Apply to all participants throughout process, including FERC	Pre-filing	Study plan meetings FERC- approved	Formal: Mandatory agencies	Pre-filing No Post- filing study requests	60 days after REA Modified 60 days after due date for comments on draft NEPA document
Traditional Licensing Process (TLP)	Mostly Paper	Post-filing (Pre-filing if Requested)	<u>Pre-filing</u> Some <u>Post-filing</u> Defined by FERC	Post-filing	Led by Applicant Limited FERC involvement	Formal: Advisory Informal: No	Post-filing	60 days after REA Schedule for final
Alternative Licensing Process (ALP)	Collaborative	Pre-filing: Requested	<u>Pre-filing</u> Collaboratively defined <u>Post-filing</u> Defined by FERC	Pre-filing	Collaborative group FERC assistance	Formal: Advisory Informal: Yes	Pre-filing Post-filing limited	60 days after REA Schedule for final

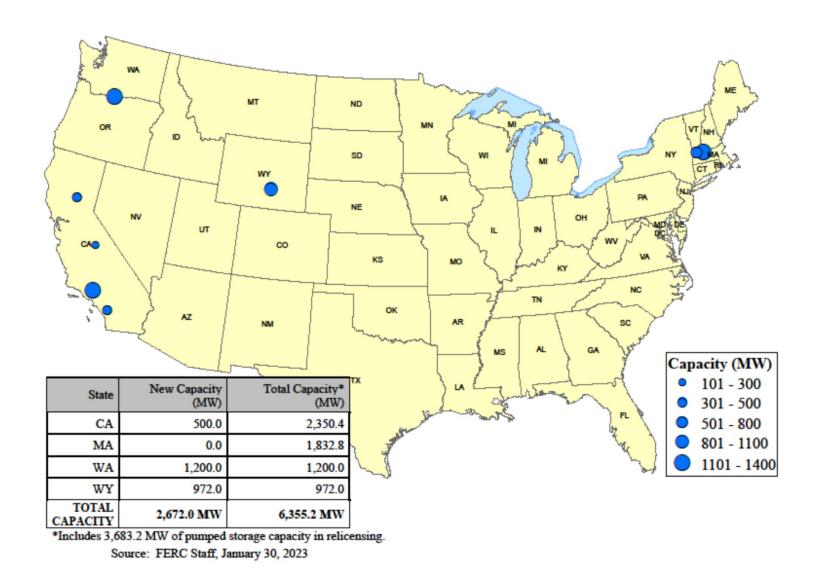

Process Selection

ILP	TLP	ALP
Default process	Available upon request and FERC approval	Available upon request and FERC approval
Projects with complex issues and study needs; FERC oversight in pre- filing	Projects with less complex issues and study needs; limited FERC oversight in pre-filing	Projects that effectively promote a self-driven collaborative pre-filing process; some FERC involvement
Predictable scheduling in both pre-filing and post- filing stages; FERC- approved study plan	Paper-driven process; few set timeframes	Collaboratively- determined schedule in pre-filing stage
ן יוי) ת		1

Post-filing elements of each process very similar



Pathway to Licensing


Licensed Pumped Storage Projects

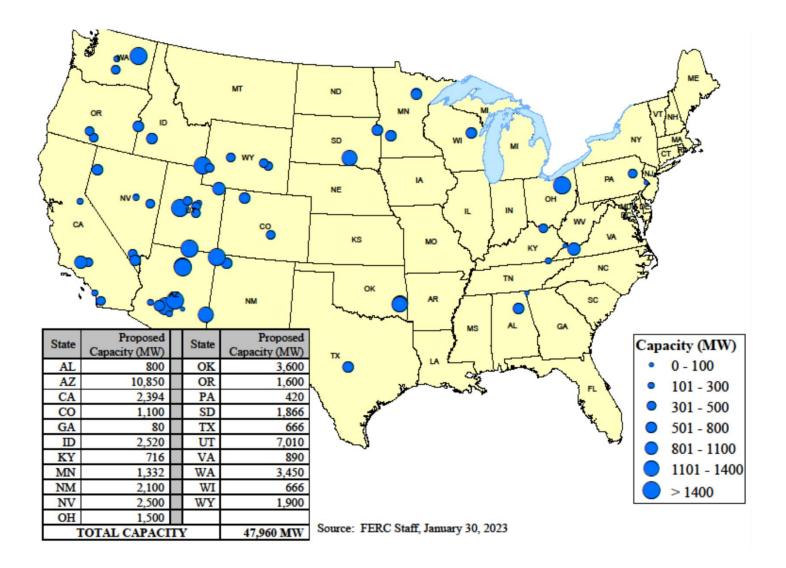
Source: FERC Staff, January 30, 2023

Source: <u>https://www.ferc.gov/media/licensed-pumped-storage-projects-map-1</u>

Pending Pumped Storage Project Licenses and Relicensed

Source: <u>https://cms.ferc.gov/media/pending-licenses-and-relicenses-pumped-storage-projects-map-0</u>

Pending Original Pumped Storage Projects


Licensing Project Project Name Applicant NOI/PAD State MW Notes Process No. San Diego Water Authority and San Vicente Pumped Storage Project CA 500 7/28/2015 TLP approved 9/28/2015. TLP P-14642 City of San Diego Blue Diamond Advanced Pumped Storage P-14804 Control Technology, Inc. FERC's Study Plan Determination issued 11/2/22. ILP NV 450 8/18/21 (revised) Project Comments on Proposed Study Plan due 4/26/23. Revised Study ILP Cat Creek Pumped Storage Project Cat Creek Energy, LLC. 1/3/2022 Plan due 5/26/23. Comments on RSP due 6/10/23. FERC Study Plan P-14655 ID 720 Determination due 6/25/23. ILP Mokelumne Pumped Storage Project GreenGen Storage, LLC 4/8/2022 FERC's Study Plan Determination issued 2/13/23. P-14796 CA 400

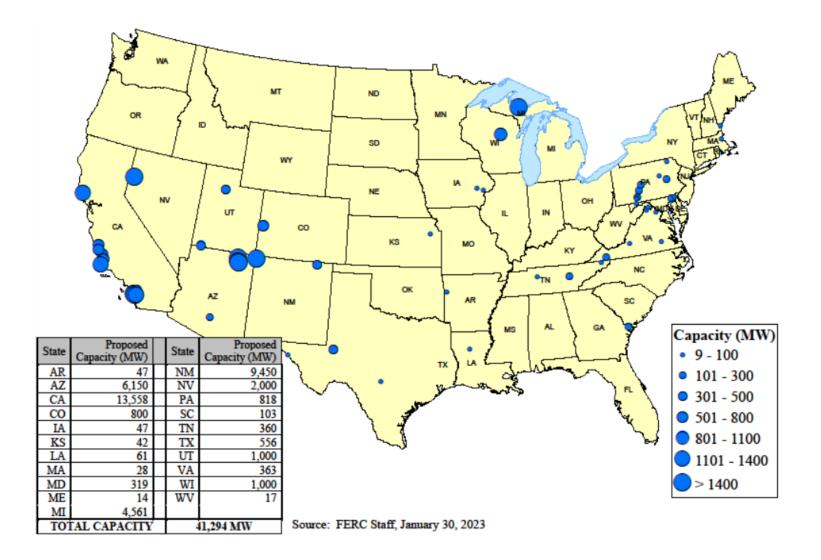
Western PSH Projects in Pre-Filing (Filed NOI/PAD)

Western PSH Projects in Post-filing (Filed License Applications)

Licensing Process	Project No.	Project Name	Applicant	State	MW	License Application	Notes
TLP	P-14861	Goldendale Pumped Storage Project	FFP Project 101, LLC	WA/OR	1,200	6/23/2020	DEIS issued 3/31/23; comments due 6/6/23.
TLP	P-14787	Seminoe Pumped Storage Project	Black Canyon Hydro, LLC	WY	972	1/18/2023	Notice of Anticipated Schedule issued 3/31/23: REA in August 2023, DEIS in May 2024, and FEIS in November 2024.
TLP	P-14851	White Pine Pumped Storage Project	White Pine Waterpower, LLC	NV	500	2/27/2023	Reviewing application

Issued Preliminary Permits for Pumped Storage Projects

Source: <u>https://www.ferc.gov/media/issued-preliminary-permits-pumped-storage-projects-map</u>


Project Number 🛛 😁			Issue Date 🖙		Authorized Capacity (kW) 😁	State 📲		
P-14742	Ute Pumped Storage Project	Ute Mountain Ute Tribe	03/02/2020	02/28/2024	1,000,000	UT	Green River Lake	Pumped Storage
P-14796	Mokelumne Pumped Storage	GreenGen Storage LLC	12/21/2017	11/30/2024	400,000	CA	Bear River	Pumped Storage
P-14804	Blue Diamond Pumped Storage	Control Technology, Inc.	06/22/2017	05/31/2024	450,000	NV	None	Pumped Storage
P-14850	Bison Creek Pumped Storage	Covington Mountain Hydro, LLC.	03/12/2018	02/28/2024	480,000	CA	None	Pumped Storage
P-14851	White Pine Pumped Storage	White Pine Waterpower, LLC.	10/25/2017	09/30/2024	500,000	NV	None	Pumped Storage
P-14876	Gregory County Pumped Storage	Western Minnesota Municipal Power	09/07/2018	08/31/2025	1,200,000	SD	Missouri River	Pumped Storage
P-14956	Granite Falls County Pumped Storage	Midwest Energy Recycling, LLC.	05/28/2019	04/30/2023	666,000	MN	Minnesota River	Pumped Storage/Conventional
P-14957	Camp Pendleton	Boyce Hydro Power, LLC.	07/17/2019	06/30/2023	300,000	CA	Pacific Ocean	Pumped Storage/Conventional
P-14983	Tomlin Pumped Storage Plant No. 2	Tomlin Energy, LLC.	10/17/2019	09/30/2023	1,200,000	OK	Kiamichi River	Pumped Storage/Conventional
P-14989	Montezuma Pumped Storage	Pumped Hydro Storage LLC	04/02/2020	03/31/2024	2,100,000	AZ	None	Pumped Storage
P-14990	Indian Spring Pumped Storage	Pumped Hydro Storage LLC	01/17/2020	12/31/2023	1,500,000	AZ	Alder Creek	Pumped Storage
P-14992	Salt Trail Canyon Pumped Storage	Pumped Hydro Storage LLC	05/21/2020	04/30/2023	1,500,000	AZ	Little Colorado Ri	Pumped Storage
P-14993	Intermountain Pumped Storage	Premium Energy Holding, LLC.	12/18/2019	11/30/2024	2,000,000	UT	Sevier River	Pumped Storage/Conventional
P-14994	Little Colorado River	Pumped Hydro Storage LLC	05/21/2020	04/30/2023	3,200,000	AZ		Pumped Storage
P-14995	San Francisco River Pumped Storage		02/18/2021	01/31/2024	1,250,000	AZ, NM		• Pumped Storage
P-15001	Energy Storage Station	Navajo Energy Storage Station LLC	02/18/2021	01/31/2024	2,210,000	UT	None	Pumped Storage
P-15006	Owyhee Pumped Storage	Owyhee Energy Storage, LLC	01/31/2020	12/31/2023	600,000	OR	Lake Owhyee	Pumped Storage/Conventional
P-15008	Sweetwater Pumped Storage	Sweetwater Hydro, LLC.	04/09/2020	03/31/2024	600,000	NM	San Juan River	Pumped Storage
P-15009	JD Sky Pumped Storage	Renewable Energy Aggregators	03/30/2020	02/28/2024	800,000	AZ	Colorado River	Pumped Storage
P-15010	Casa Grande Pumped Storage Project		10/21/2021	09/30/2024	2,400	AZ	None	Pumped Storage
P-15011	Delaney Pumped Storage	Renewable Energy Aggregators	09/24/2020	08/31/2024	200.000	AZ	None	Pumped Storage
P-15020	Eldorado Pumped Storage	El Dorado Pumped Storage, LLC.	01/27/2021	12/31/2024	750,000	NV	None	Pumped Storage
P-15029	Itasca County Pumped Storage	SV Hydro, LLC	10/28/2020	09/30/2024	666,000	MN	None	Pumped Storage
P-15031	Ruby Hill	Nevada PSH Energy Storage LLC	12/17/2020	11/30/2024	200,000	NV	None	Pumped Storage
P-15034	Beclabito Storage Center	Kinetic Power, LLC	01/12/2021	12/31/2024	1,500,000	NM	None	Pumped Storage
P-15043	Craig-Hayden Pumped Storage	Craig-Hayden PS, LLC	03/11/2021	02/28/2025	600,000		None	Pumped Storage
P-15088	Halverson Canyon Pumped Storage	Davbreak Power, Inc.	06/28/2021	05/31/2025	2,650,000	WA	Lake Roosevelt	Pumped Storage
P-15090	Bigstone Pumped Storage	Energy Recycling Company, LLC	07/12/2021	06/30/2025	666,000	SD	None	Pumped Storage
P-15030	Tehachapi Pumped Storage	Premium Energy Holdings, LLC	12/01/2021	11/30/2025	1,000,000	CA	None	Pumped Storage
P-15104 P-15105	Liano County Pumped Storage	Solia 9 Hydroelectric, LLC	09/23/2021	08/30/2025	666,000	TX	None	Pumped Storage
	· · · · · · · · · · · · · · · · · · ·					CO		
P-15227	Phantom Canyon Pumped Storage	Ortus Power Resources, LLC	05/24/2022	04/30/2026	500,000		None	Pumped Storage
P-15228	Pond Peak Pumped Storage	Pond Peak Energy Storage LLC	11/01/2022	10/31/2026	600,000	NV	None	Pumped Storage
P-15237	Barn Canyon Pumped Storage	PacifiCorp	08/10/2022	07/31/2026	300,000	UT	None	Pumped Storage
P-15238	Box Elder Pumped Storage	PacifiCorp	10/19/2022	09/30/2026	500,000	WY	None	Pumped Storage
P-15239	Crooked Creek Pumped Storage	PacifiCorp	05/19/2021	04/30/2026	500,000	OR	None	Pumped Storage
P-15240	Dry Canyon Pumped Storage	PacifiCorp	01/27/2022	12/31/2025	1,800,000	ID	None	Pumped Storage
P-15241	Long Ridge Pumped Storage	PacifiCorp	08/10/2022	07/31/2026	500,000	UT	None	Pumped Storage
P-15242	Electric Lake Pumped Storage	PacifiCorp	11/01/2022	10/31/2026	500,000	UT	None	Pumped Storage
P-15243	Rock Canyon Pumped Storage	PacifiCorp	08/10/2022	07/31/2026	500,000	UT	None	Pumped Storage
P-15244	Rocky Ridge Pumped Storage	PacifiCorp	04/07/2022	03/31/2026	500,000	WY	None	Pumped Storage
P-15245	Saddle Mountains Pumped Storage	PacifiCorp	04/11/2022	03/31/2026	500,000	WA	None	Pumped Storage
P-15246	Winter Ridge Pumped Storage	PacifiCorp	05/19/2022	04/30/2026	500,000	OR	None	Pumped Storage
P-15247	South Fork Pumped Storage	PacifiCorp	05/24/2022	04/30/2026	500,000	WY	None	Pumped Storage
P-15253	Great Divide Closed Loop Pumped Sto		03/31/2022	02/28/2026	399,000	WY	Sheep Creek	Pumped Storage
Total	44							

Active PSH Preliminary Permits as of 3/21/23 (Western States)

*

Source: <u>https://www.ferc.gov/sites/default/files/2023-04/ActivePrelimPermits_3.21.2023.xlsx</u>

Pending Preliminary Permits for Pumped Storage Projects

Source: <u>https://cms.ferc.gov/media/pending-permits</u>

Project Number	 Project Name 	Water Body 🛛 💌	State 🖵	Applicant 👻	Proposed Capacity (kW) 💌	File Date	 Description
P-15024	BIG CANNON PUMPE	NONE	AZ	Pumped Hydro Storage, LLC	3,600,000	03/12/20	PUMPED STORAGE
P-15108	San Onofre Ocean P	Pacific Ocean	CA	PREMIUM ENERGY HOLDING, LLC	150,000	03/10/21	PUMPED STORAGE
P-15146	Camp Pendleton Pui	Pacific Ocean	CA	Hydropower Highway, LLC	5,287,000	05/13/21	PUMPED STORAGE
P-15194	Bedrock Quarry	NONE	TX	Hydropower Highway, LLC	23,000	07/27/22	PUMPED STORAGE
P-15195	Big Springs Quarry	NONE	KS	Hydropower Highway, LLC	42,000	07/27/22	PUMPED STORAGE
P-15207	U.S. Border Patrol	NONE	TX	Hydropower Highway, LLC	43,000	07/27/22	PUMPED STORAGE
P-15214	Klien Quarry	NONE	IA	Hydropower Highway, LLC	30,000	07/27/22	PUMPED STORAGE
P-15215	Make One Here Qua	NONE	TX	Hydropower Highway, LLC	469,000	07/27/22	PUMPED STORAGE
P-15218	Moscow Pumped Sto	NONE	IA	Hydropower Highway, LLC	17,000	07/27/22	PUMPED STORAGE
P-15222	Preston Quarry	NONE	AR	Hydropower Highway, LLC	47,000	07/27/22	PUMPED STORAGE
P-15232	Unaweep Pumped S	NONE	CO	Public Serivce Company of CO.	800,000	08/23/21	PUMPED STORAGE
P-15233	Black Messa Pumpe	NONE	AZ	Nature and People First Arizonia PHS, LLC	2,250,000	10/05/21	PUMPED STORAGE
P-15234	Black Messa Pumpe	NONE	AZ	Nature and People First Arizonia PHS, LLC	1,500,000	10/05/21	PUMPED STORAGE
P-15235	Black Messa Pumpe	NONE	AZ	Nature and People First Arizonia PHS, LLC	2,250,000	10/05/21	PUMPED STORAGE
P-15248	Sacton Energy Storag	NONE	AZ	RAMM Power Group, LLC	150,000	11/18/21	PUMPED STORAGE
P-15255	Oquirrh Pumped Sto	NONE	UT	Oquirrh Energy Storage, LLC	500,000	01/25/22	PUMPED STORAGE
P-15261	Lake Elsinore Advar	Lake Elsinore	CA	Navada Hydro Company, Inc.	500,000	02/08/22	PUMPED STORAGE
P-15265	Winnfield Rock Qua	NONE	LA	Hydropower Highway, LLC	13,000	07/27/22	PUMPED STORAGE
P-15269	Nacimiento Pumpec	Lake Nacimiento	CA	PREMIUM ENERGY HOLDING, LLC	600,000	03/31/22	PUMPED STORAGE
P-15270	Santa Margarita Pur	Santa Margarita Lake	CA	PREMIUM ENERGY HOLDING, LLC	600,000	03/31/22	PUMPED STORAGE
P-15271	Twitchell Pumped S	Santa Maria River	CA	PREMIUM ENERGY HOLDING, LLC	600,000	03/31/22	PUMPED STORAGE
P-15272	Whale Rock Pumper	Whale Rock Reservoir	CA	PREMIUM ENERGY HOLDING, LLC	600,000	03/31/22	PUMPED STORAGE
P-15274	Hurricane Cliffs Purr	NONE	WA	Hurricane Cliffs PSH, LLC	500,000	04/22/22	PUMPED STORAGE
P-15284	Vandenberg Pumpe	Pacific Ocean	CA	HGE Energy Storage 1, LLC	1,351,000	08/18/22	PUMPED STORAGE
P-15286	Camp Pendleton Pu	Pacific Ocean	CA	HGE Energy Storage 2, LLC	1,270,000	09/22/22	PUMPED STORAGE
P-15287	Fort Ross Hydro Proj	Pacific Ocean	CA	HGE Energy Storage 3 LLC	1,250 000	09/27/22	PUMPED STORAGE
P-15291	Pyramid Lake Pumpe	Pyramid Lake	NV	PREMIUM ENERGY HOLDING, LLC	2,000,000	11/04/22	PUMPED STORAGE
P-15293	Chuska Mountain Pu	San Juan River	NM	Nature and People First New Mexico PHS,	9,000,000	12/09/22	PUMPED STORAGE
P-15294	Juan Torres Mesa Pi	NONE	NM	JT Mesa Hydro, LLC	450,000	12/14/22	PUMPED STORAGE
P-15304	Corral Summit Pump	Big Lost River	ID	Cat Creek Energy, LLC	200,000	02/16/23	PUMPED STORAGE
P-15305	Twentymile Pumpec	None	CO	Twentymile Pumped Storage, LLC	250,000	03/10/23	PUMPED STORAGE
P-15306	Isabella Pumped St	Kern River	CA	Premium Energy Holdings, LLC	12,000	03/15/23	PUMPED STORAGE
P-15307	Haiwee Pumped Stc	Haiwee Creek	CA	Premium Energy Holdings, LLC	1,600,000	03/17/23	PUMPED STORAGE
Total	33						

Pending PSH Preliminary Permits as of 3/21/23 (Western States)

*

Source: <u>https://www.ferc.gov/sites/default/files/2023-04/ActivePrelimPermits_3.21.2023.xlsx</u>

Opportunities to Participate in the Commission's Review Process

- Submit written comments during the Commission's proceedings.
- Attend public meetings.
- Request to be a cooperating agency or an intervenor in a proceeding.

What is an Intervenor? <u>https://www.ferc.gov/frequently-asked-questions-faqs</u> How to Intervene <u>https://www.ferc.gov/how-intervene</u>

Staff will accept and consider all comments filed during a proceeding.

Tips for Getting and Staying Involved

- START EARLY!
- Stay informed (i.e., eSubscribe)
- Participate in pre-filing
 - Review filings and file comments
 - Participate in meetings, study development, and working groups
- Participate in post-filing
 - Review application
 - Review NEPA document
 - File comments and recommendations

Tips for Filing Comments

- ✓ State your objectives early and concisely
- \checkmark Be as clear and specific as possible
- ✓ Provide adequate support and justification for recommendations (substantial evidence)
- ✓ Be consistent
- ✓ Focus on project nexus

Watch FERC WorkshOPP on Powerful Comments: <u>https://www.youtube.com/live/P12Y7FeUcJw?feature=share</u>

FERC's Electronic Systems

- eLibrary
- eRegister
- eFiling
- eSubscription
- eService
- eComment

https://www.ferc.gov/ferc-online/overview

All services are free and available via any internet connection (no installation required)

FERC Online

Overview

Filing Fees

Filing Forms

Notice Formats

How To Guides

Company Registration

Frequently Asked Questions (FAQs)

Comment Policy

HOME > FERCIONLINE > FERCIONLINE

FERC Online

<u>Login</u>

Login to your FERC Online account or create a new one.

eComment

eComment is limited to individuals filing comments on their own behalf in the following proceeding

- Hydroelectric License/Re-license Proceedings (P Project Number),
- · Pre-Filing Activity for Planned Natural Gas Projects (PF Docket),
- · Applications for Authorization to Construct a Natural Gas Pipeline,
- Liquelied Natural Gas (LNG) or Other Facility (CP Dockets),
- · Pre-Filing Activity for Permits to Site Interstate Electric Transmission Lines (PT Dockets), and
- · Applications for a Permit to Site Interstate Electric Transmission Lines (ET Dockets).

TIP: Your system must not block emails from ferc.gov. After you submit an eComment request, yo email from ferc.gov with a link to the comment system.

TIP: The application will time-out after 35 minutes of inactivity. Create a Word or Text file (up to then copy/paste them in the eComment Text Box to avoid time-out limits.

Note for eComment: (P, PF, PT and CP Dockets only; eRegistering is not required)

<u>eFiling</u>

You must have or create a full eRegistration account (not limited to eSubscription) and use the Comsystem if you are filing:

· On behalf of a company agency organization, association, or other non-individual

Web Resources www.FERC.gov

Hydropower Page

(https://www.ferc.gov/industries-data/hydropower) Overview of licensing, compliance, and dam safety programs.

Division of Hydropower Administration & Compliance

COMPLIANCE HANDBOOK

Office of Public Participation (OPP)

How to Participate

Contact FERC

File a Comment

Request a Rehearing

Frequently Asked Questions (FAQs)

Intervene

Overview

on (OPP)

About OPP

Pursuant to <u>Section 319</u> of the Federal Power Act, as amended on November 15, 2021, in <u>Public Act 117-58</u> of the Infrastructure Investment and Jobs Act the Commission has established the the Office of Public Participation (OPP) to assist the public with Commission proceedings. The Commission has produced a <u>public</u> **report** to guide the development of the office based on <u>stakeholder feedback</u> during listening sessions, a full-day workshop, and a written comment period.

The public can contact OPP now for assistance navigating Commission proceedings of all types. Examples include questions on when and how to intervene, comment, file motions, or seek rehearing. OPP will not assist in the actual drafting of pleadings and other submissions.

OPP is beginning operations with limited staff, so we appreciate the public's understanding and patience if OPP cannot immediately respond. Ongoing and additional support will be further determined and established by the incoming OPP Director.

Office of Public Participation (https://www.ferc.gov/OPP) Emily Carter Hydropower Outreach Coordinator Office of Energy Project – Division of Hydropower Licensing Federal Energy Regulatory Commission (202) 502-6512 or Emily.Carter@FERC.gov <u>www.FERC.gov</u>

Bureau of Reclamation - Non-Federal Hydropower Development

Permitting and Processes for New Pumped Storage Hydropower Systems Western States Federal Agency Support Team (WestFAST) April 12, 2023


Presentation Agenda

- US Bureau of Reclamation Overview
- Non-Federal Hydropower Development on Reclamation Projects Primer
- Non-Federal Pumped Storage Development Considerations
- Lease of Power Privilege Process

Reclamation Overview

- #1 US Water Wholesaler
 - ~ 187 Water Resource Projects
 - ~ 337 Reservoirs
 - ~ 476 Dams
- #2 US Hydropower Generator
 - 77 Reclamation-Owned Facilities
 - 53 Reclamation-Owned/Operated
 - ~ 14,750 MW
 - ~ 40,000,000 MWh/Year

Reclamation Overview

Reclamation Region	Facility (#)	Unit (#)	Capacity (MW)	Net Generation (MWh)
Columbia-Pacific Northwest	10	56	7,537	21,826,975
California-Great Basin	10	26	1,910	3,706,946
Lower Colorado Basin	3	28	2,454	5,067,122
Upper Colorado Basin	9	22	1,816	4,814,686
Missouri Basin	21	44	1,041	2,795,884
Reclamation Total	53	176	14,758	38,211,614

- Facility: Reclamation owned, operated, and maintained ("reserved works") power facilities.
- Net Generation: Ten-year rolling average.
- https://www.usbr.gov/power/facil/Reclamation_Hydroelectric_Powerplants_Sum mary_Table_12_22.pdf

Reclamation Overview

Facility Type	Facility	State	Capacity (MW)
Reserved	Grand Coulee (Keys)	Washington	314
	Mt. Elbert	Colorado	200
	Flatiron (Unit 3)	Colorado	9
Transferred	San Luis	California	424
	O'Neill	California	25
	Horse Mesa	Arizona	129
	Mormon Flat	Arizona	60
	New Waddell	Arizona	45
	Senator Wash	California	7
			1,213

Non-Federal Development

- Reclamation encourages non-federal hydropower development sited within existing Reclamation Projects – provided:
 - Development operates in harmony with the Reclamation Project
 - Development does not conflict with authorized Reclamation Project purposes
 - Development does not impair the safety, security, and reliability of the Reclamation Project
 - Development does not have significant adverse environmental, cultural, or historical impacts

See: Reclamation Manual Policy, *Hydroelectric Power* (FAC P04) https://www.usbr.gov/recman/policies.html

Non-Federal Development

- Permitting processes for non-federal hydropower development sited within a Reclamation Project:
 - Reclamation Lease of Power Privilege (LOPP) Contract; or
 - Federal Energy Regulatory Commission (FERC) License
- Jurisdiction is dependent upon Reclamation Project authorizations, in accordance with a 1992 Memorandum of Understanding

Non-Federal Development

- LOPP and FERC processes provide Reclamation oversight/controls to ensure the non-federal project operates in harmony with the underlying Reclamation Project
- Non-federal projects may be subject to dual jurisdiction/dual permitting processes (i.e., LOPP and FERC) – e.g.,:
 - Pumped storage development utilizing a Reclamation Project reservoir within Reclamation LOPP jurisdiction and a second, non-federal reservoir within FERC jurisdiction

Non-Federal Pumped Storage Development

- Considerations re: the use of Reclamation Projects for non-federal pumped storage development
 - Potential Opportunities
 - Leverage existing infrastructure
 - Proximity to requisite resources
 - Access to local expertise/support

Critical Considerations –

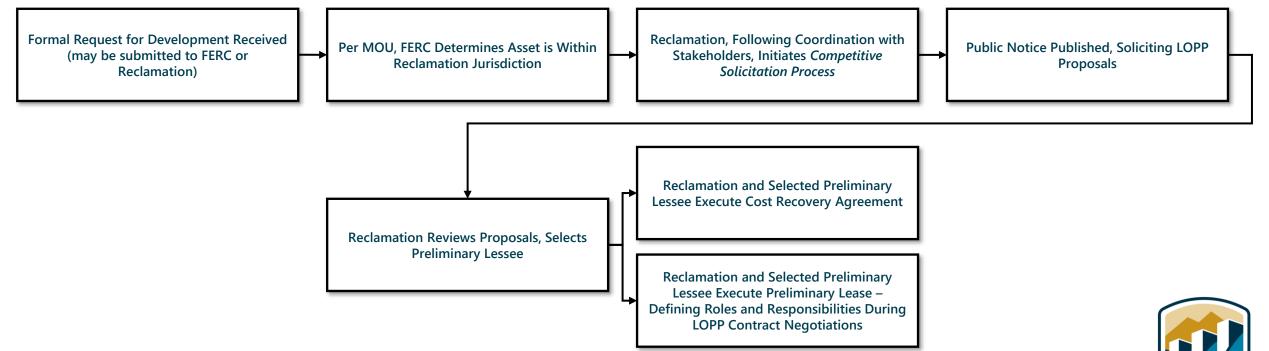
- Requirement to operate within Reclamation Project parameters
- Potential for dual jurisdiction, dual permitting requirements

Non-Federal Pumped Storage Development

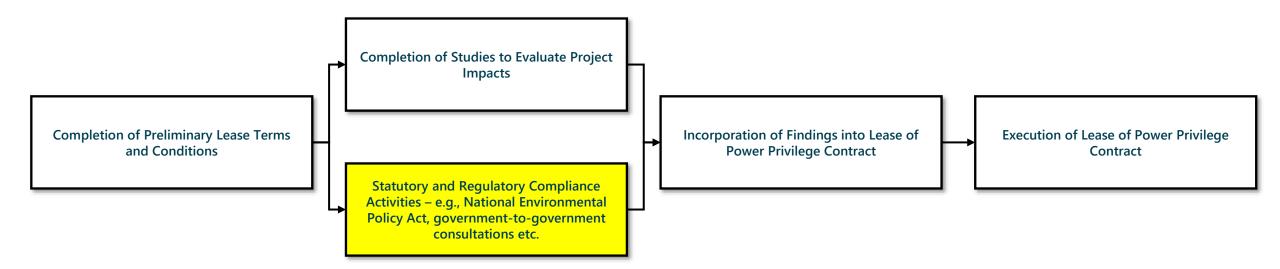
Facility Type	Facility	State	~ Capacity (MW)
FERC	-	-	-
LOPP	Banks Lake Pumped Storage Project (Lake Roosevelt)	Washington	500
FERC/LOPP	Seminoe Pumped Storage Project (Seminoe, P-14787)	Wyoming	972
	Cat Creek Energy and Water Storage Project (Anderson Ranch, P-14655)	Idaho	400
	Halverson Canyon Pumped Storage Project (Lake Roosevelt, P-15088)	Washington	2,650
	Navajo Energy Storage Station (Lake Powell, P-15001)	Utah	2,210
			6,732

"A LOPP is a contractual authorization issued by Reclamation to a non-Federal entity to use a Reclamation facility for electric power generation consistent with Reclamation project purposes"

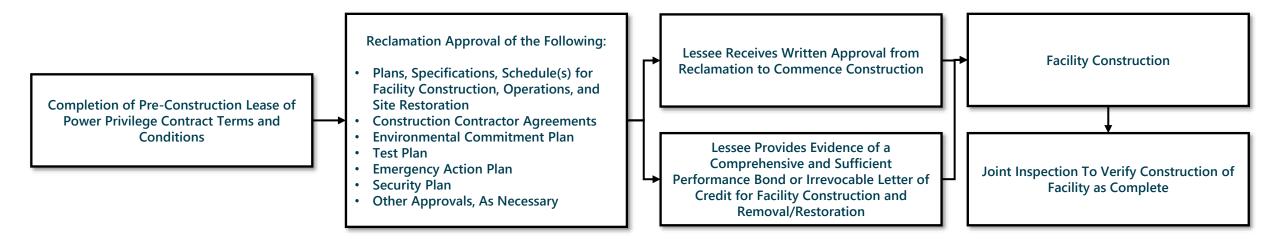
- LOPP process is defined in RM D&S, *Lease of Power Privilege (LOPP) Processes, Responsibilities, Timelines, and Charges* (FAC 04-08)
- See: https://www.usbr.gov/power/LOPP/



- Process consists of three general phases:
- Formal Request for Development Award of Preliminary Lease
 - Process dependent upon asset type (e.g., dam/reservoir or conduit)
- Award of Preliminary Lease Award of Lease of Power Privilege Contract
- Award of Lease of Power Privilege Contract End of Construction


website: https://www.usbr.gov/power/LOPP/

Formal Request for Development - Award of Preliminary Lease (Dam/Reservoir) – *Major Milestones*


Award of Preliminary Lease – Award of Lease of Power Privilege Contract – *Major Milestones*

Flowchart above limited to major milestones. Additional process requirements may apply. Detailed process requirements and flow charts available on the Reclamation power program website: https://www.usbr.gov/power/LOPP/

Award of Lease of Power Privilege Contract – End of Construction – *Major Milestones*

Flowchart above limited to major milestones. Additional process requirements may apply. Detailed process requirements and flow charts available on the Reclamation power program website: https://www.usbr.gov/power/LOPP/

Clark Bishop

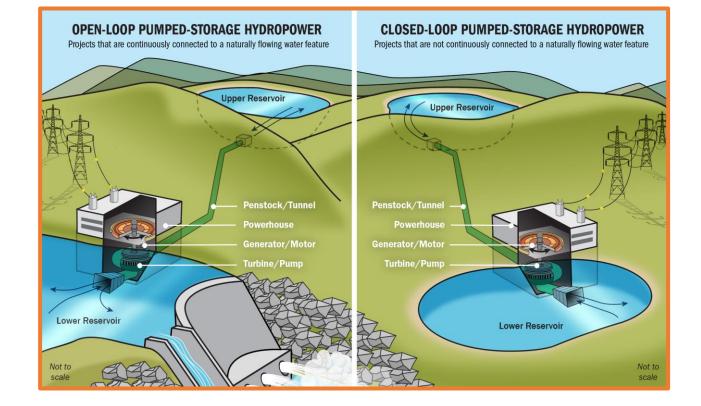
cbishop@usbr.gov https://www.usbr.gov/power/

— BUREAU OF — RECLAMATION

47

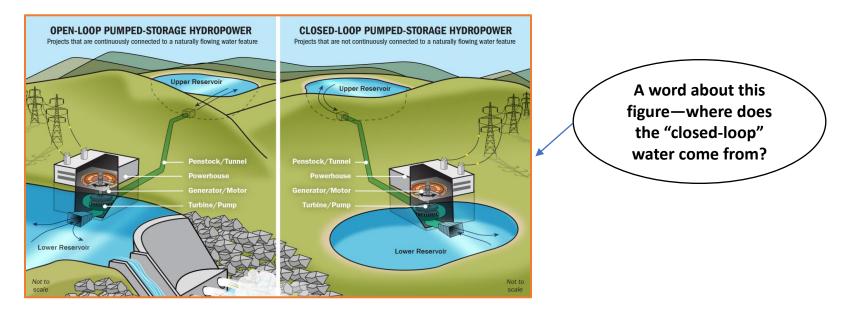
WestFAST Pumped Storage Hydropower Webinar Series

Permitting and Processes for New Pumped Storage Hydropower Systems


Considering the Environmental Effects of New Pumped Storage Hydropower

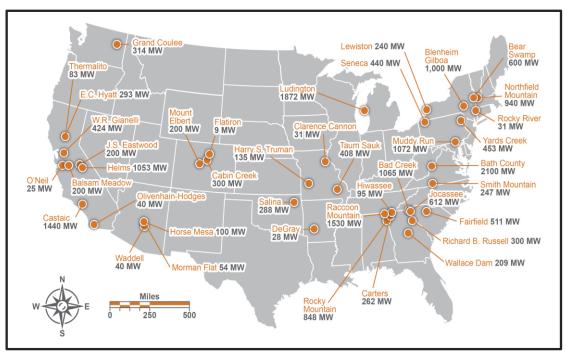
April 12, 2023

Bo Saulsbury


PNNL-SA-182981

Open-Loop vs. Closed-Loop

- Pumped storage hydropower (PSH) is generally characterized as either:
 - Open-loop: continuously connected to a naturally flowing water feature; or
 - Closed-loop: <u>not</u> continuously connected to a naturally flowing water feature.



DOE 2019

- Continuously is key: some PSH projects are closed-loop even though they withdraw water from a natural water feature *initially* to fill reservoirs and *periodically* to replace evaporative/seepage losses.
- In contrast, open-loop projects typically dam a natural water feature to create a lower reservoir and have a continuous connection based on the pumping/generating cycle.

PSH in the USA

All 43 PSH projects (21.6 GW capacity) in the U.S. are <u>open-loop</u>* and almost all were constructed more than 30 (40?) years ago. So, the environmental effects of <u>closed-loop</u> projects are not well-documented in the U.S.

Existing PSH projects in the United States (Source: Modified from MWH 2009)

*Some consider the Olivenhain-Hodges Project in California to be closed-loop because it has a FERC conduit exemption. However, its lower reservoir (Lake Hodges) was created by damming the San Dieguito River, so Lake Hodges inflows and outflows are from and to the San Dieguito River.

Closed-Loop PSH is Growing

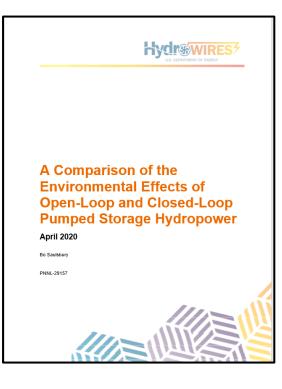
- FERC is seeing an increase in preliminary permit and license applications for closed-loop PSH. Since 2014, FERC has issued only four original licenses for new PSH:
 - one open-loop (Iowa Hill in California)
 - <u>three</u> closed-loop (Eagle Mountain in California, Gordon Butte in Montana, and Swan Lake North in Oregon).

- In 2019, FERC issued <u>final rule</u> establishing criteria for a 2-year expedited license process for *qualifying* closed-loop projects that:
 - cause little to no change to existing surface and groundwater flows and uses;
 - unlikely to adversely affect species listed as a threatened species or endangered species, or designated critical habitat of such species, under the Endangered Species Act of 1973;
 - utilize only reservoirs situated at locations other than natural waterways, lakes, wetlands, and other natural surface water features; and
 - rely only on temporary withdrawals from surface waters or groundwater for the sole purposes of initial fill and periodic recharge needed for project operation.

Closed-Loop PSH is Growing

- Three recent FERC decisions on closed-loop PSH indicate that a project that uses only <u>groundwater</u> "will not require FERC licensing if the project does not trigger other jurisdictional tests" under FPA Section 23(b) (<u>Gerard and Hites 2018</u>) (<u>Swiger et al. 2017</u>).
- The three projects in these FERC decisions would be closed-loop PSH systems using <u>groundwater</u> and reclaimed surface mine pits on <u>private land</u> in Pennsylvania; they did not meet any of the FPA Section 23(b) jurisdictional requirements.
- However, all projects are still be subject to environmental review and permitting approval by other federal, state, and local resource agencies.

2020 DOE Report

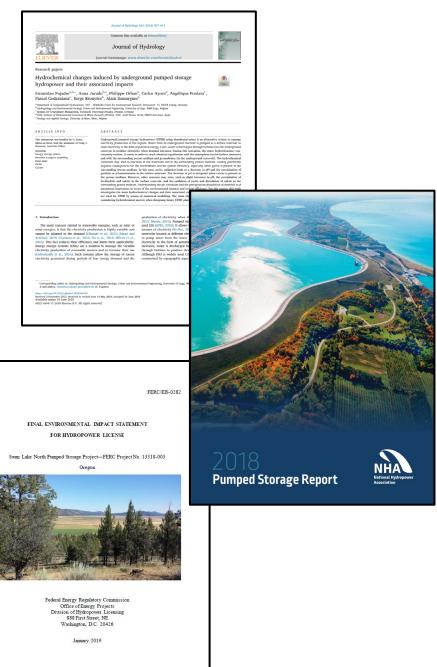

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

WATER POWER TECHNOLOGIES OFFICE

- With the potential growth in closed-loop PSH, the expedited FERC licensing process, and no FERC licensing for some projects using groundwater, it is important that all stakeholders understand the environmental effects of closed-loop when compared to open-loop.
- The environmental effects of closed-loop projects are not well-documented; conventional wisdom says "closed-loop better than open-loop" on environmental factors.
- To address this knowledge gap, the DOE Water Power Technologies Office prepared a report to:
 - compare the potential environmental effects of open-loop with those of closed-loop; and
 - describe how these effects are being avoided, minimized, or mitigated at existing projects in other countries and proposed projects in the U.S.

Report available at: DOE PSH Report 2020

*We're currently doing a follow-on report focused solely on closed-loop impacts and mitigation. Details on an upcoming webinar will be provided to this group when available.



Report available at: https://www.energy.gov/sites/prod/files/2020/04/f73/comparison-of-environmental-effects-open-loop-closed-loop-psh-1.pdf

Methodology

Comparison of environmental effects based on two reviews:

- Literature review of journal articles, technical reports, and presentations from the U.S. and from countries where closed-loop PSH has been constructed.
- Review of FERC licensing record [e.g., National Environmental Policy Act (NEPA) documents and license orders] for:
 - (1) environmental effects anticipated and mitigation measures proposed for six <u>closed-loop</u> projects licensed or permitted.
 - (2) environmental effects and mitigation measures for four <u>open-</u> <u>loop</u> projects proposed or currently operating.

Methodology

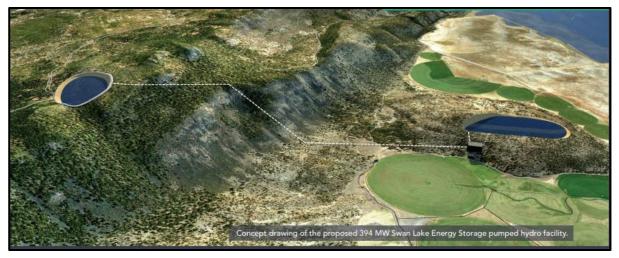
Projects included in FERC records review.

Project Name State			
Capacity	Project Type	Current Status	Primary Data Sources
Eagle Mountain California	Closed-Loop (groundwater)	Proposed; Licensed	FERC Final Environmental Impact Statement (FEIS) (2012); FERC License
1,300 MW	(8.00.00000)		Order (2014)
Mineville	Closed-Loop	Proposed; License	MHC license application (2015); FERC
New York	(groundwater)	Application	Draft Environmental Impact
240 MW		Dismissed	Statement (DEIS) (2019)
Swan Lake North	Closed-Loop	Proposed; Licensed	FERC FEIS (2019); FERC License Order
Oregon	(groundwater)		(2019)
393 MW			
Big Chino Valley	Closed-Loop	Proposed;	ITC - Big Chino Valley Pumped
Arizona	(groundwater)	Preliminary Permit	Storage pre-application document
2,000 MW			(2018); FERC letter approving use of traditional licensing process (2018)
Gordon Butte	Closed-Loop	Proposed; Licensed	FERC Environmental Assessment
Montana	(surface water)		(2016); FERC License Order (2016)
400 MW			
Parker Knoll	Closed-Loop	Proposed;	Parker Knoll Hydro license application
Utah	(surface water)	Preliminary Permit;	(Symbiotics, LLC 2011)
1,000 MW		Canceled	
Iowa Hill	Open-Loop	Proposed; Licensed;	FERC FEIS (2008); FERC License Order
California		Canceled	(2014)
400 MW			
Bath County	Open-Loop	Existing	FPC License Order (1977)
Virginia			
3,003 MW			
Big Creek 2A, 8, and Eastwood	Open-Loop	Existing	FERC FEIS (2009)
California			
373 MW			
Smith Mountain	Open-Loop	Existing	FERC License Order (2009)
Virginia			
636 MW			

Resources Affected

For each project type, focus on impacts of both <u>construction</u> and <u>operations</u> on the environmental resources most often discussed in the literature and FERC documents.

- Aquatic Resources:
 - Surface water quality and quantity. Impacts primarily related to 1) initial withdrawal of surface water for reservoir fill and 2) movement of
 water between and within project water bodies.
 - Groundwater quality and quantity. Projects using groundwater for initial reservoir fill and to replace evaporative and seepage losses (typically closed-loop) have the potential to impact to both groundwater quality and quantity.
 - Aquatic ecology. Impacts on fish and other aquatic ecology primarily related to instream construction of dams (for open-loop projects), initial withdrawal of surface water for reservoir fill, and movement of water between and within project water bodies, especially naturally flowing lakes or rivers.



Proposed Eagle Mountain PSH Project, California

Resources Affected

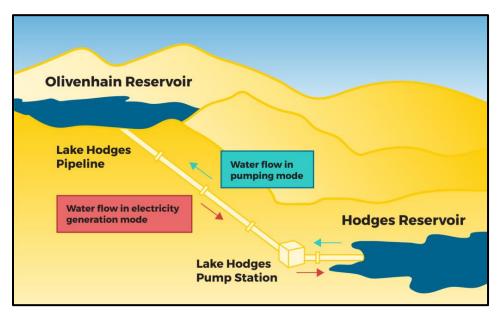
• Terrestrial Resources

- Geology and soils. Construction impacts as project reservoirs and related facilities require large-scale excavation and tunneling. Operations impacts from reservoir shoreline erosion.
- Terrestrial ecology. Construction impacts as project reservoirs and related facilities require clearing and/or inundating large land areas that provide wildlife habitat.
- Land use, recreation, visual resources, and cultural resources. Construction requires clearing and/or inundation of large land areas, especially for project reservoirs. Committing large land areas to PSH development can impact existing and planned land uses, recreation, visual resources, or cultural resources at the project site and in the vicinity.
- Comparison often focuses on impacts to <u>aquatic resources</u> because they are typically the resources for which differences between open-loop and closed-loop PSH systems are most apparent.

Some Caveats

- Report is a literature/records <u>review</u>. Not field work. Not rocket science.
- Comparison of effects:
 - based on both spatial (location) and temporal (duration) factors and reflects both the likelihood and severity of impacts.
 - <u>relative</u>--characterizes impacts of each project type as generally lower than, similar to, or higher than another project type.
 - reflects general trends among project types; there are sometimes exceptions to the examples cited.

Summary of Findings


- Conclusions tend to support conventional wisdom about open-loop vs. closed-loop.
- Environmental effects of closed-loop generally *lower* (i.e., more localized and of shorter duration) than those of open-loop because they:
 - are located "off-stream," minimizing aquatic and terrestrial impacts, and;
 - often have greater siting flexibility than open-loop projects.
- However, some impacts of closed-loop can be *higher* than those of open-loop, particularly for geology and soils and groundwater. This can be due, for example, to the impacts of constructing two above-ground reservoirs rather than one or the impact of groundwater withdrawal or circulation.

Bath County PSH Project, Virginia

Summary of Findings

- One circumstance where impacts of <u>constructing</u> a new upper reservoir and power generation facilities for an openloop project could be lower than those of constructing a new closed-loop project: open-loop projects where the lower reservoir was already constructed for other purposes and an upper reservoir is added later for PSH operations (i.e., an "add-on" project).
- Such "add-on" open-loop projects comprise 12 of the 43 existing PSH projects in the U.S. (including the newest, Olivenhain-Hodges in California, which began operations in 2012).
- However, the impacts of add-on project <u>operations</u> are still likely higher than those of closed-loop because the add-on project's lower reservoir is still continuously connected to a natural water feature.

Olivenhain-Hodges Project, California

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

WATER POWER TECHNOLOGIES OFFICE

Thank you!

Bo Saulsbury

james.saulsbury@pnnl.gov

Report available at: DOE PSH Report 2020

Additional slides on <u>relative</u> impact comparisons

Construction: Aquatic Resources

Surface Water Quality

 Impacts typically higher for open-loop because construction and initial reservoir fill commonly requires damming a natural water feature to create the lower reservoir (rather than constructing an artificial lower reservoir). Such damming may inundate a large land area and have adverse effects on water quality.

Surface Water Quantity

- Impacts could be similar for either project type, resulting in a consumptive water use that could reduce the supply for other uses such as irrigation, recreation, industrial, and municipal. This could be exacerbated by evaporative and seepage losses of surface water from above-ground reservoirs.
- Consumptive use impacts might be higher in closed-loop because they could hold the surface water in a closed system, but the water could be returned to the original source if needed.

Relative comparison: Construction impacts on aquatic resources open-loop vs. closed-loop				
Aquatic Resource	Open-Loop PSH Impacts	Closed-Loop PSH Impacts		
	Surface Water (Construction and Initial Fill)	Groundwater (Construction and Initial Fill)	Surface Water (Construction and Initia Fill)	
Surface Water Quality				
Surface water temperature	(D) Higher	Lower	Lower	
Reduced dissolved oxygen in surface water	Higher	Lower	Lower	
Alterations in sediment transport processes and connectivity	Higher	NA	Lower	
Transfer of underground leachate contaminants to surface water	Lower	E Higher	Lower	
Surface Water Quantity				
Surface water supply for other uses (e.g., irrigation, recreation, municipal)	O Similar	Lower	Similar	
Groundwater Quality				
Groundwater temperature and chemistry (e.g., water/ore-body interactions)	Lower	C Higher	Lower	
Groundwater circulation and flow patterns	Lower	Higher	Lower	

Construction: Aquatic Resources

Groundwater Quality and Quantity

- For projects not connected to groundwater, potential impacts are generally limited to the effects of underground construction or tunneling or reservoir seepage.
- Closed-loop projects using groundwater for initial reservoir fill have the potential for relatively higher impacts to both groundwater quality and quantity.

Aquatic Ecology

- Open-loop projects have relatively higher impacts because of initial effects on the ecology of the natural water features that are dammed and inundated for their lower reservoirs.
- Closed-loop projects using surface water for initial reservoir fill may have similar impingement and entrainment impacts during the initial withdrawal period, but these impacts are of shorter duration than at open-loop projects.

Relative comparison: <u>Construction</u> impacts on aquatic resources open-loop vs. closed-loop (continued)			
Aquatic Resource	Open-Loop PSH Impacts	Closed-Loop PSH Impacts	
	Surface Water (Construction and Initial Fill)	Groundwater (Construction and Initial Fill)	Surface Water (Construction and Initia Fill)
Groundwater Quantity			
Groundwater supply for other uses (e.g., irrigation, recreation, municipal)	Lower	() Higher	O Lower
Groundwater recharge of surface waters	Lower	(D) Higher	0 Lower
Aquatic Ecology			
Loss of riverine habitat	O Higher	NA	O Lower
Loss of littoral habitat	O Higher	NA	Lower
Impingement and entrainment of fish and other aquatic species	Similar	NA	O Similar
Migration delays or losses in sediment transport or river connectivity due to hydraulic changes	O Higher	NA	Lower

Construction: Terrestrial Resources

Geology and Soils

- Impacts primarily due to large-scale excavation for above-ground reservoirs and project facilities and excavation/tunneling for underground project facilities and pipelines.
- Because closed-loop typically involves excavating two artificial reservoirs (upper and lower), initial impacts may be relatively higher than those of openloop, which typically involves excavating only one artificial reservoir (upper).

Terrestrial Ecology, Land Use, Recreation, Visual Resources, and Cultural Resources

 Open-loop projects generally have higher impacts because they have less flexibility in facility siting. That is, open-loop is typically sited on a natural water body, which serves as the project's lower reservoir. It is difficult to avoid disturbing the sensitive terrestrial resources around these natural water bodies.

Relative comparison: Construction impacts on terrestrial resources open-loop vs. closed-loop				
Terrestrial Resource	Open-Loop PSH Impacts	Closed-Loop PSH Impacts		
	Surface Water (Construction and Initial Fill)	Groundwater (Construction and Initial Fill)	Surface Water (Construction and Initial Fill)	
Geology and Soils				
Surface excavation and increased erosion and spoils	٢	Θ	Θ	
	Lower	Higher	Higher	
Tunneling and increased spoils	Similar	Similar	Similar	
Surface land subsidence	Lower	Higher	Lower	
Induced seismicity	Lower	Higher	Lower	
Terrestrial Ecology		g		
Vegetative clearing	۲	٥	0	
	Higher	Lower	Lower	
Wildlife habitat disturbance	() Higher	Lower	Lower	
Land Use	riigiici	Lower	Lower	
Existing and planned uses, especially in sensitive areas	Θ	0	0	
Recreation	Higher	Lower	Lower	
Recreational fisheries and boating	Θ	NA	٥	
Recreational access	Higher	0	Lower	
	Higher	Lower	Lower	

Construction: Terrestrial Resources

<u>Terrestrial Ecology, Land Use, Recreation, Visual Resources, and</u> <u>Cultural Resources</u>

- Above-ground closed-loop projects can be sited further from their water source, and water can delivered to the project by pipeline. Given this siting flexibility, they can also be sited closer to residential, commercial, and industrial energy consumers, thereby shortening transmission line corridors and reducing related impacts to terrestrial resources.
- Underground closed-loop projects typically have the smallest impacts on these resources because they disturb smaller land surface areas.

Relative comparison: <u>Construction</u> impacts on terrestrial resources						
	open-loop vs. closed-loop (continued)					
Terrestrial Resource Open-Loop PSH Impacts Closed-Loop PSH Imp			PSH Impacts			
	Surface Water (Construction and Initial Fill)	Groundwater (Construction and Initial Fill)	Surface Water (Construction and Initial Fill)			
Visual Resources						
Construction activities viewed from sensitive areas	Θ	0	٩			
Cultural Resources	Higher	Lower	Lower			
Surface excavation and underground tunneling	Θ	0	0			
	Higher	Lower	Lower			
Access to cultural sites and practices	Θ	0	٢			
	Higher	Lower	Lower			

Operations: Aquatic Resources

Surface Water Quality

- Open-loop typically has more widespread and longer-lasting impacts due to the regular (typically daily) pattern of withdrawal from/discharge to natural water bodies.
- Closed-loop with above-ground reservoirs typically has lower impacts because it does not have regular (only initial and periodic) withdrawals from/discharge to natural water bodies.

Surface Water Quantity

- Both open-loop and closed-loop with above-ground reservoirs experience evaporation and seepage, the rates of which depend on local atmospheric and geologic conditions, the use of reservoir liners, and other factors.
- Consumptive use impacts might be higher in closed-loop because it holds surface water in a closed system, but the water could be returned to the original source if needed.

Aquatic Resource	Open-Loop PSH Impacts	Closed-Loop PSH Impacts	
	Surface Water (Operation; Daily Withdrawal/Discharge)	Groundwater (Operation; Periodic Withdrawal from Source)	Surface Water (Operation; Periodic Withdrawal from Source)
Surface Water Quality			
Sedimentation due to reservoir shoreline erosion	() Higher	Lower	() Lower
Changes in sediment transport	Higher	Lower	0 Lower
Surface water temperature	Higher	Lower	Lower
Reservoir water circulation patterns	Higher	Lower	Lower
Concentration of dissolved solids, nutrients, and heavy metals in surface water due to evaporation	Higher	Lower	Lower
Decreased reservoir light penetration	() Higher	0 Lower	() Lower
Surface Water Quantity			
Reservoir evaporative losses	i milar	Similar	Similar
Groundwater Quality			
Groundwater temperature and chemistry (e.g., water/ore-body interactions)	Lower	C Higher	Lower
Groundwater circulation and flow patterns	Lower	Higher	Lower

Operations: Aquatic Resources

Groundwater Quality and Quantity

- For open-loop and closed-loop not connected to groundwater, potential impacts are generally limited to the effects of reservoir seepage.
- Closed-loop using groundwater for periodic replenishment of evaporative and seepage losses has the potential for relatively higher impacts to both groundwater quality and quantity.

Aquatic Ecology

- Open-loop has more widespread and longer-lasting impacts because of ongoing (rather than initial and periodic) effects on the ecology of the natural water feature.
- Similar types of impacts could occur at closed-loop using surface water, but they could be less widespread and of shorter duration because of no continuous withdrawal from/discharge to a surface water source.
- Also, artificial reservoirs constructed for closed-loop support fewer aquatic ecological resources (at least initially) than the natural water bodies affected by open-loop.

	open-loop vs. closed-l	oop (continued)	
Aquatic Resource Open-Loop PSH Impacts Closed-Loop PSH Impacts			PSH Impacts
	Surface Water (Operation; Daily Withdrawal/Discharge)	Groundwater (Operation; Periodic Withdrawal from Source)	Surface Water (Operation; Periodic Withdrawal from Source)
Groundwater Quantity			
Groundwater supply for other uses (e.g., irrigation, recreation, municipal)	Lower	() Higher	Lower
Groundwater recharge of surface waters	Lower	Higher	Lower
Aquatic Ecology			
Impingement and entrainment of fish and other aquatic species	(D) Higher	NA	Lower
Migration delays or losses in river connectivity due to hydraulic changes	Higher	NA	Lower

Operations: Terrestrial Resources

Geology and Soils

- Both open-loop and closed-loop pumping and generating operations may have impacts primarily due to large and frequent reservoir water-level fluctuations and resulting shoreline erosion.
- Impacts may be relatively higher at open-loop because of the potential effects of shoreline erosion and sedimentation on natural water bodies.

<u>Terrestrial Ecology, Land Use, Recreation, Visual Resources, and Cultural</u> <u>Resources</u>

• Open-loop tends to have more widespread and longer-lasting impacts because it lacks siting flexibility and has ongoing impacts on the water quality and quantity and aquatic ecology of the natural water source.

Terrestrial Resource	Open-Loop PSH Impacts	Closed-Loop PSH Impacts		
	Surface Water (Operation; Daily Withdrawal and Discharge)	Groundwater (Operation; Periodic Withdrawal from Source)	Surface Water (Operation; Periodic Withdrawal from Source	
Geology and Soils				
Reservoir shoreline erosion	0	0	0	
	Higher	Lower	Lower	
Surface Land Subsidence	٩	Θ	0	
	Lower	Higher	Lower	
Induced seismicity	0	Θ	٢	
	Lower	Higher	Lower	
Terrestrial Ecology				
Water quality impacts on wildlife	Θ	٥	٥	
	Higher	Lower	Lower	
Land Use				
Existing and planned uses, especially in sensitive areas	Θ	0	0	
sensitive areas	Higher	Lower	Lower	
Recreation				
Recreational fisheries	0	٥	٥	
	Higher	Lower	Lower	
Recreational access	0	0	0	
	Higher	Lower	Lower	
Visual Resources				
Project facilities viewed from sensitive areas	Θ	٢	٢	
	Higher	Lower	Lower	
Views of reservoir shoreline erosion	0	٥	0	
SHOTEIME EIUSION	Higher	Lower	Lower	

Operations: Terrestrial Resources

<u>Terrestrial Ecology, Land Use, Recreation, Visual Resources,</u> <u>and Cultural Resources</u>

- One possible exception is due to an operational benefit of closed-loop: essentially an unlimited ramping rate for pumping/generating because of no fish impingement concerns.
- However, while this would not affect fish because it's a closed-loop system, it could affect avian or terrestrial species due to rapid reservoir fluctuations that might not occur with an open-loop system.
- Closed-loop with underground reservoirs (especially those located in abandoned underground mining sites) typically have the smallest operational impacts on terrestrial resources.

Relative comparison: <u>Operations</u> impacts on terrestrial resources open-loop vs. closed-loop (continued)				
Terrestrial Resource	Open-Loop PSH Impacts Closed-Loop PSH Impacts			
	Surface Water	Groundwater	Surface Water	
	(Operation; Daily	(Operation; Periodic	(Operation; Periodic	
	Withdrawal and Discharge)	Withdrawal from Source)	Withdrawal from Source)	
Cultural Resources				
Shoreline erosion	(D)	Lower	0	
exposing resources	Higher		Lower	
Access to cultural sites	Higher	O	O	
and practices		Lower	Lower	

RAPID Regulatory and Permitting Information Desktop Toolkit

Aaron Levine

Taylor Curtis

National Renewable Energy Laboratory RAPID Toolkit Overview

Regulatory Processes for Renewable Energy and Bulk Transmission Projects The Regulatory and Permitting Information Desktop (RAPID) Toolkit offers a solution to navigating the complex system of federal and state regulations necessary to secure project approval. The RAPID Toolkit provides easy access to federal and state permitting information, best practices, and reference material for renewable energy and bulk transmission project development.

OVERVIEW

The Hydropower RAPID Toolkit provides easy access to permitting information from one online location.

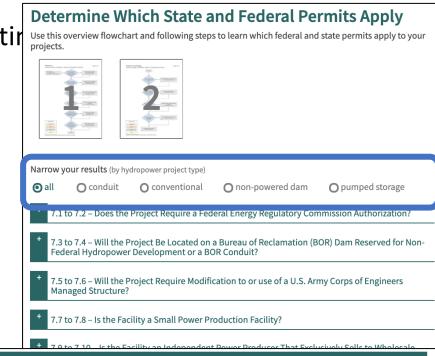
FEATURES

Regulations and Permitting

Regulatory and permitting information by jurisdiction, including comparisons between jurisdictions

Reference Library

A collection of links to regulatory and permitting documents, regulations, and tools available on other websites



Best Practices

A collection of best practices for efficiently permitting renewable energy and bulk transmission projects

Features:

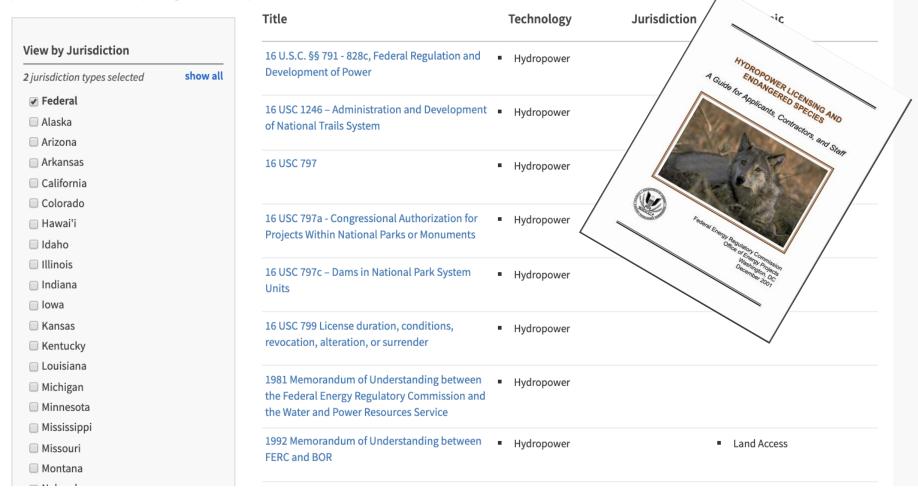
- Ability to sort regulatory and permittir processes by hydropower sub-type (e.g., NPD, PSH, conduit)
- Project dashboard to save and track required permits and approvals

My Projects

Create a project and manage tasks in the RAPID Toolkit. Learn more about how to use the project

7.9 to 7.10 – Does the Developer Seek a Preliminary Permit?

A developer may apply for a Preliminary Permit with FERC to establish priority for their application for a license while the developer obtains data and performs the acts required to determine the feasibility of the project and to support an application for a license. 18 C.F.R. § 4.80. FPA Part 1(f). Each preliminary permit will maintain priority of application for a maximum of four years. 16 U.S.C. § 798. For more information, see:


FERC Preliminary Permit: 7-FD-h

Hydropower Reference Library

The RAPID Toolkit reference library is a collection of links to regulatory and permitting documents - including permits, guidance, manuals, applications, tools, regulations, statutes, and rules - that are available on other websites.

Explore the reference library using the search options below or upload a reference.

Development of Best Practices, Lessons Learned, Regulatory Analysis Publications

- Collect input from hydropower stakeholders to identify best practices, lessons learned, and/or other substantive legal, regulatory, and policy issues.
- Review and prioritize list with DOE-WPTO
- Research and analyze issues (including extensive interviews, dialogue, and review with hydropower industry stakeholders.
- Publish as NREL Technical Reports
- Post to the RAPID Toolkit Best Practice Library with a high-level summary and link to full report.

Thank You

For questions or comments, please contact:

Aaron Levine

Aaron.Levine@nrel.gov 303-275-3855

Taylor Curtis Taylor.Curtis@nrel.gov 303-275-4481

SUBSCRIBE TO OUR NEWSLETTER

Stay in touch with all Hydropower RAPID Toolkit developments.

rapidtoolkit.org

Public Service of Colorado Ponnequin Wind Farm